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Abstract. We consider the regression approach based on Gaussian pro-
cesses and outline our theoretical results about the properties of the poste-
rior distribution of the corresponding covariance function’s parameter vector.
We perform statistical experiments confirming that the obtained theoretical
propositions are valid for a wide class of covariance functions, commonly used
in applied problems.
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1 Introduction

At the present time regression based on Gaussian Processes (GP-regression)
is one of the most popular methods for recovery (approximation) of an un-
known function using a sample of its values [11, 1, 7].
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It is assumed that the observed sample of function values at fixed points
of the design space is a realization of a Gaussian process whose distribution
is completely defined by a predefined expectation and covariance functions.

It is also assumed that the covariance function between sample values
depends only on the points of observations. In this case the function’s value at
a new point is usually predicted by using a posterior expectation (with respect
to the known sample of function values) of the process and uncertainty of
the prediction are estimated by a posterior variance. The posterior mean
and the posterior variance can be calculated analytically [11] and are fully
determined by the covariance function of the Gaussian process.

One usually assumes that the covariance function of a Gaussian pro-
cess belongs to a certain parametric family [11] (parametric description) and
therefore a GP-regression construction problem can be reduced to a problem
of estimating covariance function parameters.

At the present moment theoretical results about properties of parameter
estimates of a covariance function are obtained only for very special cases |8,
6, 12, 10|, in particular, asymptotic framework (the sample size tends to
infinity) with correctly specified parametric model is considered. At the
same time a theoretical analysis of the GP-regression properties for the case
of high dimensional data and finite sample size as well as the analysis of the
GP-regression behaviour for the case of possible model misspecification are of
vital importance. Such analysis forms grounds for justification of the often-
used marginal likelihood maximisation de facto being a standard procedure
in machine learning industry for estimation of GP parameters in practically
important cases.

It is very natural to perform the theoretical analysis of the GP-regression
method using Bayesian approach. The central result of the Bayesian statistics
is the celebrated Bernstein-von Mises Theorem (BvM) about the proximity
of the posterior distribution of an unknown parameter vector, defining the
GP regression model, to the corresponding normal distribution.

The BvM result provides a theoretical background for different Bayesian
procedures. In particularly, one can use Bayesian computations for evaluation
of the MLE and its variance. Also one can build elliptic credible sets using
the first two moments of the posterior, etc.

Classical asymptotic methods of statistics [5] are not suited to analyse
properties of the posterior distribution for the case of growing parameter
dimension and finite data sample size. Therefore new statistical approaches,
based on an advanced theory of empirical processes, are necessary to perform



the analysis, see [13].

In this paper we describe our results [2, 4|, which justify that for GP-
regression under rather general conditions non-asymptotic version of the BvM
theorem is valid for the case, when the initial parametric assumption about
the GP covariance function can be not true. Obtained results provide suf-
ficient condition on the relation between the sample size and the parameter
space dimension, which guarantees the fulfilment of the BvM theorem. Re-
sults of the massive statistical modelling, being the main aim of this work,
demonstrate that all the statements of the BvM theorem, proved by the
authors, are valid in practice.

The paper has the following structure. In section 2 we describe procedure
for function reconstruction based on Gaussian Processes. In section 3 we
describe the BvM theorem. In section 4 results of performed computational
experiments are given.

2 Regression based on Gaussian Processes

GP-regression is constructed as follows. Consider a sample of values of an
unknown function D = (X,y) = {x;,y(x;) = y:}",;, x € X C R We need
to construct, given the sample D of size n, an approximation y(x) of the
function y(x).

We will assume that the function y(x) is a realization of a Gaussian
process. Without loss of generality we let the mean of this Gaussian process
to be equal to zero. In this case the joint distribution of the vector y has the
form y oc N'(0, K), where K is a positive definite covariance matrix that, in
general, depends on the sample D.

Suppose that the covariance between values of the Gaussian process at ar-
bitrary points x and x’ is defined by a certain covariance function cov(y(x), y(x’)) =
k(x,x’). We denote this as y(x) ~ GP (0, k(x,x)). Then the covariance ma-
trix of sample values D has the form K = {k(x;, x;)}7,_;.

For a Gaussian random process, the posterior distribution of its realiza-
tion y(x) at a new point x € R? will be normal for a fixed covariance function

Law (y(x)|D) = N (u(x), o*(x)).

Expressions for the expectation u(x) and the variance o%(x) of the posterior



distribution Law(y(x)|D) can be written explicitly as

p(x) =k'(x)Ky,
o (x) = k(x,x) — k' (x) K 'k(x).

Here k(x) = (k(x,%1),...,k(x,%,))" is the column vector of the covariances
between the value y(x) of the random process at the point x and values
(y(x1),-..,y(x,)) of the random process at the sample points (x1,...,X,).
The posterior mean p(x) is used as a prediction y(x) of the process value y(x),
and the posterior variance o%(x) can serve as an estimate of the prediction’s
uncertainty.

In practice, to model a covariance function one usually uses some para-
metric family of covariance functions kg(x,x’), @ € © C RP, where O is a
compact set. In this case, to construct regression based on Gaussian pro-
cesses it suffices to estimate the vector of parameters 8 of the covariance
function ke (x,x’). Naturally, there is no reason to assume that the paramet-
ric assumption on the covariance function of a Gaussian process holds, i.e.,
in general k(x,x') & {ko(x,x), 8 € © C RP}.

The joint distribution of the vector of known values y will be normal.
Then the logarithm of the data (quasi-) likelihood has the form

1
L(6) = ~3 [nlog2m +In|Ke| +y Kg'y], (1)

where Ko = {ko(xi,%;)}7,-1-
As an estimate of the vector of parameters @ one often uses the maximal
(quasi-) likelihood estimate (MLE)

0 = argmax L(6).
oce

Suppose that we are also given a certain prior distribution 17(d@) for the
vector of parameters €. Then the posterior distribution for the given sample
D describes the conditional distribution of the random vector . This is
usually written as

Law (¢ | D) o exp{L(8)} I1(d0). (2)

We would like to note that the maximum of the posterior distribution can
be used as a characteristic value (estimate) of the parameter vector 8 and
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in the case of the non-informative prior distribution I1(d@) it coincides with
the MLE 8.

The purpose of this work is to verify the theoretical results about the
properties of the posterior distribution Law (19 | D), obtained by the authors
in the papers [4, 2|, using statical modelling approaches.

3 Properties of the Posterior Distribution

Let us denote by || - |2 the matrix spectral norm, by I, € R™" an identity
matrix, by F{-} a mathematical expectation and by Var{-} a covariance
operator with respect to the distribution y(x) ~ GP (0, k(x, x)).

In what follows we concentrate on the case of a non-informative prior
distribution 77(d@) and possibly misspecified parametric model, i.e., in gen-
eral k(x,x') & {ko(x,x), @ € O} and the underlying data distribution can
lie beyond the given parametric family.

Let the following assumptions hold true:

(A1) ke(x,x’) is three times continuously differentiable with respect to 8 € ©
for x,x' € X

(A2) max {[ K[|, [|Koll2} < X < oo, max {[|K7" |2, 155" 2} < do < o0

for 6 € O,
OK I’K PPK
(A3) H o ||, = A< 09, ‘aeiagj , S A < oo, Haeiaejgek , S M <00

for @ € ©,i,j,k =1, p,

(A4) The central point 8" = argmaxg.g IF'L(6) exists,

(A5) The minimal eigenvalues of matrices %D% and %VOQ are greater than

do > 0 vy > 0 correspondingly, where D3 = —V2IEL(0)|,_,- and V@ =
Var{VL(O)HO:e*.

These assumptions are analogous to the assumptions from the paper [12].

3.1 Quadratic Exponential Covariance Function

Let us consider an example of a covariance functions parametric class, namely
quadratic exponential covariance function [11], which is widely used in prac-



tice |1, 7]:

d
ko(x,x') = 62 (exp (—%65 Z(:cl — x;)2> + 0?0(x — X’)) : (3)
i=1
where 0(+) denotes the Kroneker function. The first term in (3) specifies the
covariance between values of the Gaussian process’ realizations at the points
of the design (input) space, while the second term defines the variance level
of the normally distributed noise in the data.

In case of a quadratic exponential covariance function conditions, listed
above, are assured by the choice of a sufficiently good (regular) design X
and the value of the noise level 0% > 02 > 0, which plays the role of a
regularization parameter for the corresponding covariance matrix K.

3.2 The Bernstein—von Mises theorem for a Regression
based on Gaussian Processes

We denote by C a universal absolute constant that in different formulas can
take different values, by E{-} a mathematical expectation with respect to
2 def

the distribution Law (9 | D). We define the values 9 < E{9|D},&> &
E {(19 — 5) (19 — E)T ‘ D}, which play the role of the posterior mean and

the posterior covariance matrix of the random vector ¥ correspondingly.
p— r2 2 p—
Let us also denote C; = %rg)\Q/\é (2A2X + Ao)?, Cy = Z08 4 = 4NONIN+
0

9d2vo
5.5)\3X2)\1/\2 + A3, where ry > 0 is a constant, defined in the upper bound
for an exponential moment of a derivative of the quasi log-likelihood L(8),
see [4]. The following theorem holds true [4, 2.

The Bernstein—von Mises theorem. Suppose that assumptions (Al)-
(A5) hold true and

n > max(Cip, C4p*). (4)

Then there exist a value 3, explicitly defined by the constants from the as-
sumptions (A1)-(A5), and a random event (2, with dominating probability

]P(Qn) >1—Ce ™, x, =logn, such that for 7, = \% on §2,

|0 (5-5)“2 < Cra(p+ %), (5)
|1, = Do&*Dyl| , < Cronlp + %a) - (6)



Besides, for an arbitrary measurable set A C IRP and v o< N'(0, 1)) it holds

that

P67 (9-0) € 4) = e ) {P(y € A) = Crylp+x,)"2} = Ce ™,
(7)

P (6_1<19 _5> e A) < GCTn(p-l—xn){P(,Y c A) + CTn(p+Xn)1/2} 4 Ce ™,
(8)

The main idea of the proof is to construct estimates from above for ex-
ponential moments of the quasi log-likelihood L(@) and its derivatives and
then use the results of the papers [13, 15].

Inequalities (5) and (6) show that the mean value 9 and the covariance
matrix &2 of the posterlor distribution Law (19 ‘ D) are close to the MLE
and the matrix Dj? correspondingly. Inequalities (7) and (8) describe how
close (in total variation norm) the posterior distribution Law (& |D) is to
the corresponding normal distribution.

4 Computational Experiments

4.1 Data Generation

In experiments we use the following covariance functions:

kO(X7X/) (exp ( Zez—i-l : > +o 5(X - X/)) ) (9>
d
ko(x,x') = 62 (exp ( 03 Z ) + 0?0(x — X/)> , (10)

kg(x,x") = exp ( 292 ) +025(x — x). (11)

We will assume that the noise variance is known and equals o2 = 0.001.
In the paper we assume the prior distribution on the vector of parameters
to be uniform on a given hypercube © = (0,07*) x ... x (0,67*). This
non-informative prior distribution does not distort the shape of the original
likelihood in the neighbourhood of a point 6*.
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Let a value of the parameter vector 0™ is selected, the sample of points
X = {x;};, x; € X = [0,1]¢ is generated. Then the joint distribution of
the vector y is a multidimensional normal with a zero expectation and a
covariance matrix Kg- = {ko (Xi,%;)}7'j—1-

A single sample D for an arbitrary @ € @ is generated as follows:

e suppose that a covariance function kg(x,x’) and its parameters 6 are
fixed,

e generate a set of points X = {x;}I; of fixed size n, e.g., with the
uniform distribution on a hypercube X = [0, 1],

e generate a normally distributed vector y with zero expectation and
covariance matrix Ko = {kg(X;, X;)}7,=; at points from X,

e the vector y will be a realization of the Gaussian process with fixed
covariance function kg(x, x’).

4.2 Form of the Data Posterior Distribution

Covariance functions, widely used in practice, usually provide regular be-
haviour of the parameter vector posterior distribution and the corresponding
quasi log-likelihood, but in some cases the quasi log-likelihood can have a
maximum at zero or several local extrema [9] (for example, in case if the
covariance matrix Ky is “almost” degenerate). The corresponding examples
are given in figure 1.

4.3 Distribution of Parameter Estimates

For a sample D we can obtain the MLE 0 and the mean posterior value J.
Let us investigate properties of the distributions of @ and 9 depending on
the sample size.

In order to estimate a density we use a kernel density estimator with
a Gaussian kernel [14]. The kernel width is selected using cross-validation
procedure. Besides kernel density estimates we also show on figures 95%
confidence intervals for obtained estimates.

We consider a one-dimensional case (p = d = 1) and a covariance function
defined by (11). For 0 obtained results are given in figure 2. For 9 obtained
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Figure 2: Kernel density estimate for 5, parameter space dimension is equal
top=1

results are given in figure 3. We can see that the densities of 0 and 9
concentrate around the true value when the sample size increases.

Also we consider a two-dimensional case (p = 2), i.e. a covariance function
is defined by (10). For 0 obtained results are given in figure 4. For ¥
obtained results are given in figure 5. In this case the densities of 6 and
9 also concentrate around the true value when the sample size increases.
Besides from the figures we can see that the shapes of the distributions of @
and ¥ are very similar.

4.4 Bound from above for deviations of the Posterior
Distribution mean and covariance matrix

Let us consider the following experiment for one-dimensional (p = 1) and
two-dimensional (p = 2) covariance functions. In theorem 3.2 it is shown

that norms HDO (5 — 5) ‘z and HIP — D062D0Hoo are bounded from above
by quantities, which decreases as Ln when the sample size n increases. In
figures 6 and 7 we show how these norms behaves for one-dimensional co-
variance function (11) and for two-dimensional covariance function (10) cor-
respondingly. We can see that these norms both in the one-dimesional and
two-dimensional cases decrease when the sample size n increases.

N2
From figure 8 it follows that HDO (19 — 0)

also decreases when the

2
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Figure 4: Kernel density estimate for 5, parameter space dimension is equal
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(a) The sample size n is (b) The sample size n is (c) The sample size n is
equal to 10 equal to 200 equal to 1000

Figure 5: Kernel density estimate for 199, parameter space dimension is equal
top=2

sample size n increases, for example, for the case when the parameter space
dimension p = 6.

4.5 Proximity of the Posterior Distribution to the Nor-
mal Distribution

The BvM theorem states that the parameter vector 9 posterior distribution
is close to a normal distribution: the total variation distance [3] between the
posterior distribution and the corresponding normal distribution decreases
when the sample size n increases. A mathematical expectation and a covari-
ance matrix of this normal distribution are set equal to the mathematical
expectation ¥ and the covariance matrix &2 of the parameter vector 9 pos-
terior distribution.

In the current section we provide experimental results for covariance func-
tion (10), which illustrates this statement of the theorem, given above.

In figure 9b we show how the Hellinger distance [3] between the considered
posterior distribution and the corresponding normal distribution depends on
the sample size n. In figure 9a we show how the total variation distance
between the considered posterior distribution and the corresponding normal
distribution depends on the sample size n.

We can see that both of the distances decrease when the sample size
increases. This confirms that estimates (7) and (8) are valid in the considered
case.
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4.6 The relation between the sample size and the di-
mension of the parameter space

The result, obtained in section 3.2 (see formula (4)), defines the minimal
sample size n, which guarantees the fulfilment of the BvM theorem.

We consider a risk of covariance function parameter estimates. In figure
10 we show the dependence of the risk on the sample size n and the parameter
space dimension p. We can see that if for each parameter space dimension
p the sample size n is bigger than some critical value, then the obtained
parameter estimates turn out to be precise enough.

5 Conclusions

In the paper we outline our theoretical results |2, 4], which provide grounds
for the Bayesian parameter estimation of a regression based on Gaussian
Processes:

e the BvM theorem for the non-asymptotic case and possibly misspeci-
fied parametric assumption about the parametric family of covariance
functions,
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the sufficient condition on the relation between the sample size and the
dimension of the parameter space, which guarantees the fulfilment of
the BvM theorem.

Results of the massive statistical modelling confirm that all statements of
the BvM theorem, proved by the authors, are valid, in particular:

in case of almost degenerate covariance matrix Ky the posterior distri-
bution density of the parameter vector is far from the corresponding
normal distribution density,

distribution densities of the MLE 8 and the posterior mean value 9
concentrate around the true parameter vector 8,

2
HDO <19 — 0) H and ||Ip - DOGQDOH decrease when the sample size
2 o

n increases,

the posterior distribution of the covariance function parameter vector
tends (with respect to the total variation norm) to the corresponding
normal distribution,

formulated sufficient condition on the relation between the sample size
n and the dimension of the parameter space p in fact influence signifi-
cantly on the validity of the BvM theorem.
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