

Automatic optimization of helix mixer using pSeven and FlowVision

© DATADVANCE. All rights reserved

About DATADVANCE

DATADVANCE is a software vendor specialized in development of design process automation, predictive modeling and multidisciplinary design optimization software.

DATADVANCE has been incorporated in 2010 as a result of a collaborative research program by:

Institute for Information Transmission Problems of the

Russian Academy of Sciences – one of the leading mathematical centers in Russia with three Fields prize winners on the staff

AIRBUS Airbus Group (formerly EADS) – a global leader in aerospace and defense industry.

DATADVANCE offering

- **pSeven powered by MACROS technology** is a software for process integration, data mining and multidisciplinary optimization
 - helps to reduce design time and cost
 - improves the quality and performance of the product
- **Engineering Services -** solution of complex engineering problems.
- Research and development on specific customer's requirements.

Contents

- Problem definition and optimization scheme
- Single calculation with FlowVision solver
- Workflow automation in pSeven
- Optimization problem definition
- Results and conclusion

Problem definition and optimization scheme

Aim: Find optimal geometry of static helix mixer

Customer: Sulzer Mixpac

Customer expectations: "Improve mixer design "

Pressure loss to be minimized
Mixing quality to be maximized

Challenges

- Huge CPU time
- Multi-objective problem
- Time limit

SULZER

Geometry to optimize

Static Helix Mixer elements

- Mixing element constructed by sweeping the profile along the spiral
- Dividing the flow at each mixing element

Geometry is controlled by

- Convolution fraction t
- Length of one total rotation (pitch) h
- Element thickness s
- Angle of two elements to each other α

Parameters and constraints

Geometry constraints

- Convolution fraction
- Pitch (length of one total rotation)
- Element thickness
- Angle of two elements to each other

 $t \in [0.25, 0.75]$ $h \in [14 \text{ mm}, 26 \text{ mm}]$ $s \in [0.7 \text{ mm}, 1 \text{ mm}]$ $\alpha \in [60^\circ, 120^\circ]$

Global parameters

- Pipe with 5 mixing elements
- Pipe diameter D=10 mm
- Mixing ratio of two fluids is 1:1
- Fluid properties: $\mu = 10 Pa \cdot s$, $\rho = 1000 \frac{kg}{m^3}$
- Inlet velocity $U_{1,2} = 0.01$ m/s
- Reynolds number Re = 0.01

General approach

Definitions of objective functions

Mixing quality measured by flow dispersion of fluid concentration (the less the better)

Flow dispersion DF =
$$\sqrt{\frac{\iint (C - \langle C \rangle)^2 \rho V_n dS}{\iint \rho V_n dS}}$$
 calculated at the 5th element

Pressure drop dP is a pressure difference at the end of the 1st mixing element

Software used

Solidworks Typeven Seven FlowVision

pSeven powered by MACROS technology

Data Analysis | Design optimization Uncertainty management | Process integration

	Faster	 Save time in development cycle and reduce simulation costs Faster simulations thanks to surrogate models Faster optimization due to reduced number of iterations High Performance Computing capabilities 	4
	Stronger	 Get stronger than your competitors with optimized designs Robust methods with a high convergence rate 	
T pSeven	Smarter	 Discover Smart Selection feature to pick the most suitable algorithm automatically - expert level for engineers! Understand correlations between different parameters 	*
	Higher	 Obtain higher degree of automation Use more data samples Get more accurate model Get value from your test database 	

FlowVision CFD solver

Developed by TESIS company (Russia)

FlowVision main features

- 3D steady and unsteady flows of incompressible or compressible fluid
- Adaptive grid generation: geometry fitted sub-grid-resolution
- Natural linking with CAD geometry
- Gas/fluid flows in rotating systems with 'Moving body' technology
- Multi-fluid mixing and chemical processing
- Heat transfer

Process Integration and Optimization scheme

Contents

- Problem definition and optimization scheme
- Single calculation with FlowVision solver
- Workflow automation in pSeven
- Optimization problem definition
- Results and conclusion

FlowVision calculation

FlowVision project contains

- Model for calculation
- Initial conditions
- Computation space parameters
- "Moving body" geometry
- Mesh settings
- Solver settings
- Coordinates of inlet/outlet planes (for post-processing)

to be updated at each step

Mixer geometry to be changed during optimization

© DATADVANCE. All rights reserved

13

FlowVision calculation: mesh study

- Mesh size is a crucial parameter for CFD calculation.
- It is especially important in mixing simulations due to numerical diffusion.
- This effect can significantly change the value of dispersion [2,3].

The influence of mesh resolution on numerical diffusion :

Result of single calculation on 5 elements for different mesh :

14

DATADVANCE

FlowVision calculation: mesh study

Mixing at different elements for different mesh size

Calculation time at single PC for different mesh size

Accuracy of fine mesh vs. calculation time – tricky choice

April 15, 2015

FlowVision calculation: mesh

Assumption: Relative mixing quality of different geometries can be determined with medium mesh resolution

The following mesh setup is used for optimization:

- Initial mesh: 26x26x390 cells
- Initial mesh cell size:
 - 0.4 mm in mixing area
 - 2 mm in inlet/outlet area
- Adaptive mesh refinement in mixing area with factor 2

Contents

- Problem definition and optimization scheme
- Single calculation with FlowVision solver

Workflow automation in pSeven

- Optimization problem definition
- Results and conclusion

pSeven workflow

pSeven workflow: Optimizer

"Smart Selection" makes it easy-to-use: All you have to provide is a few parameters

Con	Configure MixerOptimizer (std.Optimizer)											
F	Problem Definition Options Advanced Robust optimization											
	Variables											
	+ Add — Remo	ve										
6	Name	Туре	Size	Lower bound	Upper bound	mitial Guess	Hints					Del
	📄 t	RealScalar	1	0.25	0.75	0.75	Continuous					×
	n h	RealScalar	1	0.014	0.026	0.026	Continuous					× I
	🔹 rot	RealScalar	1	1.05	2.09	1.57	Continuous					×
5												
			~				1.41 .					
			Optim	ization p	barame	ters and	d their	boui	nds			
			•									
	Objectives					Constraints						
	+ Add — Remo	ve				+ Add -	- Remove					
	Tione I	уре	Size	innes	Del	Name	Туре	Size	Lower	Upper	Hints	Del
	DF F	RealScalar	1	Expensive / Gen	eric 🔀						1	
	📄 dP 🛛 F	RealScalar	1	Expensive / Gen	eric 🕺							
	Goolf	unction	a and	thoir two								
	Goal functions and their types											
	Auto grouping Batch mode Optimal outputs: x,f,c Converged outputs: Auto											
_												
	?								C	ж	Cancel	Apply

April 15, 2015

pSeven workflow: SolidWorks block

- Easy access to the model tree through CAD API
- Smooth integration of model parameters to the block ports

Configure SolidWorksCreate (std.SolidWorks)			×	
Document file	Export file			Initial model and export file
Project file templates(osm_mb.SLDPRT'	Project file 'mixer\geom\osm_mb.stl'			initial model and export me
Document tree 📉 🕈 🚼 🗄	Parameters	▼ +		
dimensions	Aname.	Portname Ports Type		Geometry parameters
▼ 🖻 osm_mb.Part	D2@CirPattern5@osm_mb.Part@dimensions	rot input Real	alScalar	3 1
e 🕨 🚽 Sketch2	D2@CirPattern6@osm_mb.Part@dimensions	rot input Real	alScalar	
n P ⊡ neixy∋pian ▶ □ Sketch6	D2@CirPattern/@osm_mb.Part@dimensions	rot input Real	ibcalar Kaalar	
► CirPattern5	D2@CIPAtterno@Usin_intu-Part@dimensions	I input Real	al Calar	
CirPattern6	D4@Helix/Spiral1@osm_mb.Part@dimensions	h input Real	iScalar	
E CirPattern7	p@sketch2@osm_mb.Part@dimensions	p input Real	dScalar	
► CrPattern8		,		
▶ □ 30055				
▶ Повернуть2				
global variables				Madal naramatara traa
				model parameters tree
mass properties				
volume				
area				
center of mass X				
Center of mass Y				
moment of inertia XX				
moment of inertia XY				
moment of inertia YY				
moment of inertia YZ				
moment of inertia ZX				
moment of inertia ZZ				
?		OK Cancel	Apply	

pSeven workflow: creating the input text file

Create the rule for variables substitution in one click!

pSeven workflow: integrating executable file

- Running any program from shell
- Running processes on remote computer via SSH
- HPC compatibility, Batch systems support

Configure: Solve	erRun (std.ShellScript)						×		
Configuration	Script Settings							•	
Options	Type: Command 🔹		-> €	=				-	Simple shell script
Ports	Program				Name	¥alue			setup
Environment	/home/share/FV/FvSolver64]	timestamp thread_num	%d_%t			
Sandbox	Arguments								
	threads=@{thread_num} cmdf	ile=command.txt							
	Input/Output redirection						II		Preset and custom
	stdin:	<none></none>		•			II		substitution
	stdout:	stdout		•					
	stderr:	stderr		•	Filter				
	Command preview				Files	+	▲ {} =		
	/home/share/FV/FvSolver64 th	reads=12 cmdfile=command.txt >stdout.txt 2>stderr.txt		_	Port name	Direction	File Name		File liet
					result stdout	output	calc.fvrtbl_f		
					stderr	Output	stderr.txt		Automated sync of
									the files
								*	
?	-1				ОК	Cano			

Contents

- Problem definition and optimization scheme
- Single calculation with FlowVision solver
- Workflow automation in pSeven
- Optimization problem definition
- Results and conclusion

Optimization problem definition

4 parameters

Parameter	Name	Min. value	Max.value
Pitch	h	14 mm	26 mm
Convolution	t	0.25	0.75
Rotation	α	60°	120°
Thickness	S	0.7 mm	1 mm

Additional parameters and constraints: none

2 objective functions

Function	Name	Optimal	Туре	Cost
Flow dispersion	DF	Minimum	Generic	Expensive*
Pressure drop	dP	Minimum	Generic	Expensive*

* Expensive means time-consuming in evaluation. *Smart Selection* technique uses this parameter for automated optimization method selection

Different optimization strategies in pSeven

AN EADS COMPAN

Optimization algorithm and parameters

Two objective optimization functions with computationally expensive* simulations

Method applied – Multi-Objective Surrogate-Based Optimization (MOSBO)

MOSBO main features

- Minimization of a number of evaluations of expensive models
- Global minima localization
- Stability to the model noise
- Errors (NaN) handling
- User defined calculations budget

Total number of calculations (budget) set to 110.

Budget was assigned based on total optimization time limit (3 days)

* Expensive means time-consuming in evaluation. This parameter is used for automated optimization method selection

Contents

- Problem definition and optimization scheme
- Single calculation with FlowVision solver
- Workflow automation in pSeven
- Optimization problem definition
- Results and conclusion

Results: Pareto-frontier

Initial geometry can be significantly improved!

Initial geometry refers to sample values from presentation: h=20mm, t=0.5, α =90⁰, s=1mm.

 $\alpha = 60.2^{\circ}$

s = 0.8 mm

0.4545

0.5

all points

initial

3

0.4091

0.3636

0.3182

Results: fine mesh calculations

Mesh

- Medium (554 000 cells) used for optimization to reduce simulation time
- Fine (4 200 000 cells) used for initial and best mixing geometry simulation to provide more reliable values of objectives

Results: parameters sensitivity study

Sensitivity analysis allows estimating the importance of input parameters to the function outputs

Histograms show the normalized scores* of parameters impact on goal functions

Results: mixing vs. convolution

All points at "mixing quality – convolution" plane Best mixing corresponds to t = 0.5

Mixing on convolution

Results: mixing vs. element rotation angle

Best Mixing corresponds to ~ 90°

Mixing on element rotation number

Conclusion

pSeven powered by MACROS technology ensured: Automatically selecting the best suitable optimization method – MOSBO - thanks to Smart Selection technique

 Solving a challenging customer problem of multi-objective helix optimization problem successfully with just 110 evaluations of computationally expensive CFD model

Pareto frontier (mixing quality vs pressure drop) discovered

- Pressure drop could be decreased by 1.5 at the same mixing quality vs. initial configuration
- Mixing quality could be increased by at least 20% at the same pressure drop as initial configuration

References

- 1. Automatically Optimization of Helix Mixer, Sulzer Chemtech, 2013
- "Laminar Flow in Static Mixers with Helical Elements", A. Bakker, R.D. LaRoche, E.M. Marshall, The Online CFM Book, 2000, <u>http://www.bakker.org/cfm</u>
- "Analysis and optimization of Kenics static mixers ", O.S. Galaktionov, P.D. Anderson, G.W.M. Peters, H.E.H. Meijer, International Polymer Processing, 18(2), 138-150, 2003

More information can be found at:

www.datadvance.net

Follow us

Contact us

info@datadvance.net

18 rue Marius Tercé, 31300, Toulouse, FRANCE Tel: +33 (5) 61 16 88 92 Pokrovsky blvd. 3, building 1B, 109028, Moscow, RUSSIA Tel: +7 (495) 781 60 88

