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Abstract

The classical Bernstein- von Mises (BvM) result is considered in finite

sample non-asymptotic setup. The approach follows the idea of Spokoiny

(2012) and it is mainly based on the local majorization device which is

introduced in that paper. The main attention is paid to notion of crit-

ical dimension which determines maximum allowed problem dimension

(p) given sample size (n). It is shown that condition ”(p3/n) is small”

is sufficient for BvM result to be valid. Also we provide an example

which shows the failure of BvM result in case, when this condition is not

satisfied .

AMS 2000 Subject Classification: Primary 62F15. Secondary 62F25,62H12

Keywords: bayesian inference, local quadratic majorization, concentration, semiparamet-

ric

1 Introduction

The prominent Bernstein – von Mises (BvM) theorem claims that the posterior measure is

asymptotically normal with the mean close to the maximum likelihood estimator (MLE)

and the posterior variance is nearly the inverse of the total Fisher information matrix.

The BvM result provides a theoretical background for Bayesian computations of the

MLE and its variance. Also it justifies usage of elliptic credible sets based on the first

two moments of the posterior. The classical version of the BvM Theorem is stated for

the standard parametric setup with a fixed parametric model and large samples; see

Le Cam and Yang (1990); van der Vaart (2000) for a detailed overview. However, in

modern statistic applications one often faces very complicated models involving a lot of

parameters and with a limited sample size. This requires an extension of the classical

results to such non-classical situation. We mention Cox (1993); Freedman (1999); Ghosal

(1999); Johnstone (2010) and references therein for some special phenomena arising in

the Bayesian analysis when the parameter dimension increases. Already consistency of

the posterior distribution in nonparametric and semiparametric models is a nontrivial

problem; cf. Schwartz (1965) and Barron et al. (1996). Asymptotic normality of the

posterior measure for these classes of models is even more challenging; see e.g. Shen

(2002). Some results for particular semi and nonparametric problems are available from

Kim and Lee (2004); Kim (2006). Cheng and Kosorok (2008) obtained a version of the

BvM statement based on a high order expansion of the profile sampler. The recent paper

fully acknowledged.
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Bickel and Kleijn (2012) extends the BvM statement from the classical parametric case to

a rather general i.i.d. framework. Castillo (2012) studies the semiparametric BvM result

for Gaussian process functional priors. In Rivoirard and Rousseau (2012) semiparametric

BvM theorem is derived for linear functionals of density and in forthcoming work Castillo

and Rousseau (2013) the result is generalized to a broad class of models and functionals.

However, all these results are limited to the asymptotic setup and to some special classes

of models like i.i.d. or Gaussian.

In this paper we reconsider the BvM result for a general parametric model. An im-

portant feature of the study is that the sample size is fixed, we proceed with just one

sample. A finite sample theory is especially challenging because the most of notions,

methods and tools in the classical theory are formulated in the asymptotic setup with

the growing sample size. Only few finite sample general results are available; see e.g. the

recent paper Boucheron and Massart (2011). This paper focuses on the semiparametric

problem when the full parameter is large or infinite dimensional but the target is low

dimension. In the Bayesian framework, the aim is the marginal of the posterior corre-

sponding to the target parameter; cf. Castillo (2012). Typical examples are provided by

functional estimation, estimation of a function at a point, or simply by estimating a given

subvector of the parameter vector. An interesting feature of the semiparametric BvM

result is that the nuisance parameter appears only via the effective score and the related

efficient Fisher information; cf. Bickel and Kleijn (2012). The methods of study heavily

rely on the notion of the hardest parametric submodel. In addition, one assumes that

an estimate of the nuisance parameter is available which ensures a certain accuracy of

estimation; see Cheng and Kosorok (2008) or Bickel and Kleijn (2012). This essentially

simplifies the study but does not allow to derive a qualitative relation between the full

dimension of the parameter space and the total available information in the data.

Some recent results study the impact of a growing parameter dimension pn on the

quality of Gaussian approximation of the posterior. We mention Ghosal (1999, 2000),

Boucheron and Gassiat (2009), Johnstone (2010) for specific examples. See the discussion

after Theorem 3.1 below for more details.

In this paper we show that the bracketing approach of Spokoiny (2012) can be used

for obtaining a finite sample semiparametric version of Bernstein – von Mises theorem

even if the full parameter dimension grows with the sample size. The ultimate goal of

this paper is to quantify the so called critical parameter dimension for which the BvM

result can be applied. Our approach neither relies on a pilot estimate of the nuisance

and target parameter nor it involves the notion of the hardest parametric submodel. The

obtained results only require some smoothness of the log-likelihood function, its finite

exponential moments, and some identifiability conditions. Further we specify this result
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to the i.i.d. setup and show that the imposed conditions are satisfied if p3n/n is small.

We present an example showing that the dimension pn = O(n1/3) is indeed critical and

the BvM result starts to fail if pn grows over n1/3 .

Now we describe our setup. Let Y denote the observed random data, and IP denote

the data distribution. The parametric statistical model assumes that the unknown data

distribution IP belongs to a given parametric family (IPυ) :

Y ∼ IP = IPυ∗ ∈ (IPυ, υ ∈ Υ ),

where Υ is some parameter space and υ∗ ∈ Υ is the true value of parameter. In the

semiparametric framework, one attempts to recover only a low dimensional component

θ of the whole parameter υ . This means that the target of estimation is

θ∗
def
= Pυ∗,

for some mapping P : Υ → IRq , and q ∈ N stands for the dimension of the target.

Usually in the classical semiparametric setup, the vector υ is represented as υ = (θ,η) ,

where θ is the target of analysis while η is the nuisance parameter. We refer to this

situation as (θ,η) -setup and our presentation follows this setting. An extension to the

υ -setup with θ = Pυ is straightforward. Also for simplicity we first develop our results

for the case when the total parameter space Υ is a subset of the Euclidean space of

dimensionality p .

Another issue addressed in this paper is the model misspecification. In the most of

practical problems, it is unrealistic to expect that the model assumptions are exactly

fulfilled, even if some reach nonparametric models are used. This means that the true

data distribution IP does not belong to the considered family (IPυ ,υ ∈ Υ ) . The “true”

value υ∗ of the parameter υ can defined by

υ∗ = argmax
υ∈Υ

IEL(υ),

where L(υ) = log dIPυ
dµ0

(Y ) is the log-likelihood function of the family (IPυ) for some

dominating measure µ0 . Under model misspecification, υ∗ defines the best parametric

fit to IP by the considered family; cf. Chernozhukov and Hong (2003), Kleijn and van der

Vaart (2006, 2012) and references therein. The target θ∗ is defined by the mapping P :

θ∗
def
= Pυ∗.
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2 Main results

In what follows, by C we denote a generic fixed constant which does not depend on the

dimensions q, p of the target and of the full parameter. In most of statements below this

constant can be made explicit. We also suppose that a large constant x is fixed which

specifies random events Ω(x) of dominating probability. We say that a generic random

set Ω(x) is of dominating probability if

IP
(
Ω(x)

)
≥ 1− Ce−x.

One of the main elements of our construction is p × p matrix D2
0 which is defined

similarly to the Fisher information matrix:

D2
0

def
= −∇2IEL(υ∗). (2.1)

Here and in what follows we implicitly assume that the log-likelihood function L(υ) is

sufficiently smooth in υ , ∇L(υ) stands for its gradient and ∇2IEL(υ) for the Hessian

of the expectation IEL(υ) . Also denote ∇ def
= ∇L(υ∗) and define the score vector

ξ
def
= D−10 ∇. (2.2)

The definition of υ∗ implies ∇IEL(υ∗) = 0 and hence, IEξ = 0 .

For the (θ,η) -setup, we consider the block representation of the vector ∇ and of

the matrix and D2
0 from (2.1):

∇ =

(
∇θ

∇η

)
, D2

0 =

(
D2

0 A0

A>0 H2
0

)
.

Define also the q × q matrix D̆2
0 and random vectors ∇̆θ, ξ̆ ∈ IRq as

D̆2
0 = D2

0 −A0H
−2
0 A>0 , (2.3)

∇̆θ = ∇θ −A0H
−2
0 ∇η,

ξ̆ = D̆−10 ∇̆θ.

The q× q matrix D̆2
0 is usually called the efficient Fisher information matrix, while the

random vector ξ̆ ∈ IRq is the efficient score.

Let Π be a prior measure on the parameter set Υ . Below we study the properties of

the posterior measure which is the random measure on Υ describing the conditional dis-

tribution of υ given Y and obtained by normalization of the product exp
{
L(υ)

}
Π(dυ) .

This relation is usually written as

υ | Y ∝ exp
{
L(υ)

}
Π(dυ). (2.4)
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An important feature of our analysis is that L(υ) is not assumed to be the true log-

likelihood. This means that a model misspecification is possible and the underlying data

distribution can be beyond the considered parametric family. In this sense, the Bayes

formula (2.4) describes a quasi posterior ; Chernozhukov and Hong (2003). Below we

show that smoothness of the log-likelihood function L(υ) ensures a kind of a Gaussian

approximation of the posterior measure. Our focus is to describe the accuracy of such

approximation as a function of the parameter dimension p and the other important

characteristics of the model.

We suppose that the prior measure Π has a positive density π(υ) w.r.t. to the

Lebesgue measure on Υ : Π(dυ) = π(υ)dυ . Then (2.4) can be written as

υ | Y ∝ exp
{
L(υ)

}
π(υ).

The famous Bernstein-von Mises (BvM) theorem claims that the posterior centered by

any efficient estimator υ̃ of the parameter υ∗ (for example MLE) and scaled by the

total Fisher information matrix is nearly standard normal:

D0(υ − υ̃) | Y w−→ N(0, IIp) ,

where IIp is an identity matrix of dimension p . An important feature of the posterior

distribution is that it is entirely known and can be numerically assessed. If we know in

addition that the posterior is nearly normal, it suffices to compute its mean and variance

for building the concentration and credible sets.

In this work we investigate the properties of the posterior distribution for the target

parameter ϑ = Pυ . In this case (2.4) can be written as

ϑ | Y ∝
∫

exp
{
L(υ)

}
π(υ)dη. (2.5)

The BvM result in this case transforms into

D̆0(ϑ− θ̃) | Y w−→ N(0, IIq) ,

where IIq is an identity matrix of dimension q , θ̃ = P υ̃ , and D̆2
0 is given in (2.3).

We consider two important classes of priors, namely non-informative and continuous

priors. Our goal is to prove that under reasonable conditions, the posterior measure for

target parameter (2.5) is close to a Gaussian distribution with properly chosen mean and

variance even for finite samples. The other important issue is to specify the conditions

on the sample size and the dimension of the parameter space for which the BvM result

is still applicable.
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First we state the BvM result about the properties of the ϑ -posterior given by (2.5)

in case of uniform prior, that is, π(υ) ≡ 1 on Υ . Define

ϑ
def
= IE

(
ϑ
∣∣Y ), S2 def

= Cov(ϑ)
def
= IE

{
(ϑ− ϑ)(ϑ− ϑ)>

∣∣Y }.
Also define

θ̆
def
= θ∗ + D̆−10 ξ̆.

Below we present a version of the BvM result in the considered nonasymptotic setup

which claims that ϑ is close to θ̆ , S2 is nearly equal to D̆−20 , and D̆0

(
ϑ− θ̆

)
is nearly

standard normal conditionally on Y . Recall the notation C for a generic absolute

constant and x for a positive value ensuring that e−x is negligible. By Ω(x) we denote

a random event of dominating probability with IP
(
Ω(x)

)
≥ 1− Ce−x .

Our results require some conditions to be satisfied, see Section 4.1 for a precise for-

mulation. The conditions include among others the quantity ε which is defined in terms

of the imposed conditions on the model; see (4.3). This value is rather small in typical

situations. For example, in i.i.d case it holds ε = C
√

(p+ x)/n .

Theorem 2.1. Suppose the conditions of Section 4.1. Define the random quantity

p
def
= p+ ‖ξ‖2 + x,

where ξ is defined by (2.2). There exists a random event Ω(x) of a dominating proba-

bility such that it holds on Ω(x)

‖D̆0(ϑ− θ̆)‖2 ≤ C ε p,∥∥IIq − D̆0S
2D̆0

∥∥
∞ ≤ C ε p,

and also ‖ξ‖2 ≤ C(p+ x) . Moreover, for any measurable set A ⊂ IRq

exp
(
−C ε p

){
IP
(
γ ∈ A

)
−
√
C(ε p + ε2 p2 q)

}
− Ce−x

≤ IP
(
S−1(ϑ− ϑ) ∈ A

∣∣Y )
≤ exp

(
C ε p

){
IP
(
γ ∈ A

)
+
√
C(ε p + ε2 p2 q)

}
+ Ce−x. (2.6)

If q is fixed then the condition “ ε p is small” yields the desirable BvM result, that is,

the posterior measure after centering and standardization is close in total variation to the

standard normal law. All the error terms are given explicitly up to absolute constants.

Moreover, the statement can be extended to situations when q grows but ε2 p2 q is still

small. The results for a non-informative prior can be extended to the case of a general
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prior Π(dυ) with a density π(υ) which is uniformly continuous, see Section 4.3 for

details.

3 The i.i.d. case and critical dimension

This section comments how the previously obtained general results can be linked to the

classical asymptotic results in the statistical literature. The nice feature of the whole

approach based on the local bracketing is that all the results are stated under the same

list of conditions: once checked one can directly apply any of the mentioned results.

Typical examples include i.i.d., GLM, and median regression models. Here we briefly

discuss how the BvM result can be applied to one typical case, namely, to an i.i.d.

experiment.

Let Y = (Y1, . . . , Yn)> be an i.i.d. sample from a measure P . Here we suppose the

conditions of Section 5.1 in Spokoiny (2012) on P and (Pυ) to be fulfilled. We admit

that the parametric assumption P ∈ (Pυ,υ ∈ Υ ) can be misspecified and consider the

asymptotic setup with n growing to infinity and simultaneously p = pn growing to

infinity. In this setup the following theorem is valid.

Theorem 3.1. Suppose the conditions of Theorem 5.1 in Spokoiny (2012). Let also

pn → ∞ and p3n/n → 0 . Then the result of Theorem 2.1 holds with ε = C
√
pn/n ,

D2
0 = nFυ∗ , where Fυ∗ is the Fisher information of (Pυ) at υ∗ .

A similar result about asymptotic normality of the posterior in a linear regression

model can be found in Ghosal (1999). However, the convergence is proved under the

condition p4n log(pn)/n→ 0 which appears to be too strong. Ghosal (2000) showed that

the dimensionality constraint can be relaxed to p3n/n → 0 for exponential models with

a product structure. Boucheron and Gassiat (2009) proved the BvM result in a specific

class of i.i.d. model with discrete probability distribution under the condition p3n/n →
0 . Further examples and the related conditions for Gaussian models are presented in

Johnstone (2010).

3.1 Critical dimension

This section discusses the issue of a critical dimension. Namely we assume that the total

dimension p grows with the sample size n and write p = pn . Theorem 3.1 requires

that pn = o(n1/3) . Here we show that this condition is essential and cannot be dropped

or relaxed. Namely, we present an example for which p3n/n ≥ β2 > 0 and the posterior

distribution does not concentrate around MLE.
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Let n and pn be such that Mn = n/pn is an integer. We consider a simple Poissonian

model with Yi ∼ Poisson(υj) for i ∈ Ij , where Ij
def
= {i : di/Mne = j} and j =

1, . . . , pn . Let also uj = log υj be the canonical parameter. The log-likelihood L(u)

with u = (u1, . . . , upn) reads as

L(u) =

pn∑
j=1

(
Zjuj −Mne

uj
)
,

where

Zj
def
=
∑
i∈Ij

Yi .

We consider the problem of estimating the mean of the uj ’s:

θ =
1

pn

(
u1 + . . .+ upn

)
.

Below we study this problem in the asymptotic setup with pn → ∞ as n → ∞ when

the underlying measure IP corresponds to u∗1 = . . . = u∗pn = u∗ for some u∗ yielding

θ∗ = u∗ . The value u∗ will be specified later. Define βn = pn/M
1/2
n = p

3/2
n /n1/2 . If

n = p3n , then βn = 1 . We consider an i.i.d. exponential prior on the parameters υj of

Poisson distribution:

υj ∼ Exp(µ).

Below we allow that µ may depend on n . Our results are valid for µ ≤ C
√

n
logn . The

posterior is Gamma distributed:

υj
∣∣Y ∼ Gamma(αj , µj),

where αj = 1 +
∑

i∈Ij Yi , µj = µ
Mnµ+1 .

First we describe the profile maximum likelihood estimator θ̃n of the target parameter

θ . The MLE for the full parameter υ reads as υ̃ = (υ̃1, . . . , υ̃pn)> with

υ̃j = Zj/Mn.

Thus, the profile MLE θ̃n reads as

θ̃n =
1

pn

pn∑
j=1

log(υ̃j).

Furthermore, the efficient Fisher information D̆2
0 is equal to β−2n p2n ; see Lemma 5.4

below.
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Figure 3.1: Posterior distribution of β−1n pn
(
θ − θ̃n

)
for βn = 1/ log(pn) , βn = 1 , and

βn = log(pn) . Solid line is for posterior mean and dashed line is for true mean.

Theorem 3.2. Let Yi ∼ Poisson(υ∗) for all i = 1, . . . , n , υ∗ = 1/pn . Then

1. If βn → 0 as pn →∞ , then

β−1n pn
(
θ − θ̃n

) ∣∣Y w−→ N(0, 1).

2. Let βn ≡ β > 0 . Then

β−1pn
(
θ − θ̃n

) ∣∣Y w−→ N(β/2, 1).

3. If βn →∞ but β3n/
√
pn → 0 , then

β−1n pn
(
θ − θ̃n

) ∣∣Y w−→∞.

We carried out a series of experiments to numerically demonstrate the results of

Theorem 3.2. The dimension of parameter space was fixed pn = 10000 . Three cases

were considered:

1. βn = 1
log pn

, which corresponds to βn → 0, n→∞ .

2. βn = 1 .

3. βn = log pn , which corresponds to βn →∞, n→∞ .

For each sample 10000 realizations of Y were generated from the exponential distribution

Exp(υ∗) and so were corresponding posterior values θ
∣∣Y . The resulting posterior

distribution for three cases is demonstrated on Figure 3.1. It can be easily seen that

results of Theorem 3.2 are numerically confirmed.

4 Supplementary

This section contains the imposed conditions and some supplementary statements which

are of some interest by itself.
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4.1 Conditions

Our approach assumes a number of conditions to be satisfied. The list is essentially as

in Spokoiny (2012), one can find there some discussion and examples showing that the

conditions are not restrictive and are fulfilled in most of classical models used in statistical

studies like i.i.d., regression or Generalized Linear models. The conditions are split into

local and global. The local conditions only describe the properties of the process L(υ)

for υ ∈ Υ0(r0) with some fixed value r0 :

Υ0(r0)
def
=
{
υ ∈ Υ : ‖D0(υ − υ∗)‖ ≤ r0

}
.

The global conditions have to be fulfilled on the whole Υ . Define the stochastic compo-

nent ζ(υ) of L(υ) :

ζ(υ)
def
= L(υ)− IEL(υ).

We start with the local conditions.

(ED0) There exists a constant ν0 > 0 , a positive symmetric p×p matrix V2
0 satisfying

Var{∇ζ(υ∗)} ≤ V2
0 , and a constant g > 0 such that for all |µ| ≤ g

sup
γ∈IRp

log IE exp

{
µ
〈∇ζ(υ∗),γ〉
‖V0γ‖

}
≤ ν20µ

2

2
.

(ED1) For all 0 < r < r0 , there exists a constant ω(r) ≤ 1/2 such that for all

υ ∈ Υ0(r) and |µ| ≤ g

sup
γ∈IRp

log IE exp

{
µ
〈γ,∇ζ(υ)−∇ζ(υ∗)〉

ω(r)‖V0γ‖

}
≤ ν20µ

2

2
.

(L0) There exist a symmetric p× p matrix D2
0 and a constant δ(r) ≤ 1/2 such that

it holds on the set Υ0(r) for all r ≤ r0∣∣∣∣ −2IEL(υ,υ∗)

‖D0(υ − υ∗)‖2
− 1

∣∣∣∣ ≤ δ(r).

The global conditions are:

(Lr) For any r > r0 there exists a value b(r) > 0 , such that

−IEL(υ,υ∗)

‖V0(υ − υ∗)‖2
≥ b(r).

(Er) For any r ≥ r0 there exists a constant ν0 > 0 and a constant g(r) > 0 such that

sup
υ∈Υ0(r)

sup
µ≤g(r)

sup
γ∈IRp

log IE exp

{
µ
〈∇ζ(υ),γ〉
‖V0γ‖

}
≤ ν20µ

2

2
.



12 Critical dimension in semiparametric Bernstein - von Mises Theorem

Condition (Er) will be made more precise by specifying the rate of decay of the function

g(r) ; (see section 4.2).

Finally we specify the regularity conditions. We begin by representing the information

and the covariance matrices in block form:

D2
0 =

(
D2

0 A0

A>0 H2
0

)
, V2

0 =

(
V 2
0 B0

B>0 Q2
0

)
.

The identifiability conditions in Spokoiny (2012) ensure that the matrix D0 is positive

and satisfied a2D2
0 ≥ V2

0 for some a > 0 . Here we restate these conditions in the special

block form which is specific for the (θ,η) -setup.

(I) There are constants a > 0 and ν < 1 such that

a2D2
0 ≥ V 2

0 , a2H2
0 ≥ Q2

0, a2D2
0 ≥ V2

0. (4.1)

and

‖D−10 A0H
−2
0 A>0 D

−1
0 ‖∞ ≤ ν. (4.2)

The quantity ν bounds the angle between the target and nuisance subspaces in the

tangent space. The regularity condition (I) ensures that this angle is not too small and

hence, the target and nuisance parameters are identifiable. In particular, the matrix D̆2
0

is well posed under (I) . The bounds in (4.1) are given with the same constant a only

for simplifying the notation. One can show that the last bound on D2
0 follows from the

first two and (4.2) with another constant a′ depending on a and ν only.

Also we introduce a constant ε , which depends on the choice of the local zone ra-

dius r0 :

ε = 3ν0 a
2 ω(r0) + δ(r0). (4.3)

4.2 Bracketing and upper function devices

This section briefly overviews the main constructions of Spokoiny (2012) including the

bracketing bound and the upper function results. The bracketing bound describes the

quality of quadratic approximation of the log-likelihood process L(υ) in a local vicinity

of the point υ∗ , while the upper function method is used to show that the full MLE υ̃

belongs to this vicinity with a dominating probability. Introduce the notation L(υ,υ∗) =

L(υ)− L(υ∗) for the (quasi) log-likelihood ratio. Given r > 0 , define the local set

Υ0(r)
def
=
{
υ : (υ − υ∗)>D2

0(υ − υ∗) ≤ r2
}
.
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For ε , define the bracketing quadratic processes Lε(υ,υ
∗) and Lε(υ,υ

∗) :

Lε(υ,υ
∗)

def
= (υ − υ∗)>∇L(υ∗)− ‖Dε(υ − υ∗)‖2/2,

D2
ε

def
= D2

0(1− ε), ξε
def
= D−1ε ∇L(υ∗)

and accordingly for ε = −ε .

The next result states the local bracketing bound. The formulation assumes that

some value x is fixed such that e−x is sufficiently small. If the dimension p is large, one

can select x = C log(p) . Also a value r0 has to be fixed which separated the local and

global zones.

Theorem 4.1. Suppose the conditions (ED0) , (ED1) , (L0) , and (I) from Section 4.1

with r20 ≥ C(a2 + 1)(p+ x) for a fixed constant C . Then

Lε(υ,υ
∗)−♦ε(r0) ≤ L(υ,υ∗) ≤ Lε(υ,υ

∗) +♦ε(r0), υ ∈ Υ0(r0), (4.4)

where the random variables ♦ε(r0),♦ε(r0) fulfill on a random set Ω(x) of dominating

probability

♦ε(r0) ≤ C ε (p+ x), ♦ε(r0) ≤ C ε (p+ x) . (4.5)

Moreover, the random vector ξ = D−10 ∇L(υ∗) fulfills on Ω(x)

‖ξ‖2 ≤ CIE‖ξ‖2 ≤ Ca2(p+ x).

Furthermore, assume (Er) and (Lr) with b(r) ≡ b yielding

−IEL(υ,υ∗) ≥ b ‖D0(υ − υ∗)‖2

for each υ ∈ Υ \Υ0(r0) . Let also r20 ≥ C(a2∨b−1) (p+x) and g(r) ≥ Cb for all r ≥ r0 ;

see (Er) . Then

L(υ,υ∗) ≤ −u(υ), υ ∈ Υ \ Υ0(r0). (4.6)

holds on a random set Ω(x) with u(υ) = b ‖D0(υ − υ∗)‖2/2 .

The results (4.4) and (4.5) are stated in Spokoiny (2012) but for a slightly different

definition of D2
ε and D2

ε . Namely, for ε = (δ, %) , one defines D2
ε = D2

0(1− δ)−%V2
0 and

similarly for ε = −ε . However, these two constructions are essentially equivalent due to

the identifiability condition (I) . Indeed, a2D2
0 ≥ V2

0 implies

D2
0(1− δ)− %V2

0 ≥ (1− ε)D2
0, D2

0(1 + δ) + %V2
0 ≤ (1 + ε)D2

0

with ε = δ + a2% .
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4.3 Extension of Theorem 2.1 to a continuous prior

The results of Theorem 2.1 for a non-informative prior can be extended to the case of a

general prior Π(dυ) with a density π(υ) which is uniformly continuous on the local set

Υ0(r0) . More precisely, let π(υ) satisfy

sup
υ∈Υ0(r0)

∣∣∣ π(υ)

π(υ∗)
− 1
∣∣∣ ≤ α, sup

υ∈Υ

π(υ)

π(υ∗)
≤ C, (4.7)

where α is a small constant while C is any fixed constant. Then the results of Theo-

rem 2.1 continue to apply with an obvious correction of the approximation error.

As an example, consider the case of a Gaussian prior Π = N(0, G−2) with the density

π(υ) ∝ exp
{
−‖Gυ‖2/2

}
. In addition, suppose that the value ‖Gυ∗‖ is bounded by a

fixed constant. Then

log
π(υ)

π(υ∗)
= −‖Gυ‖2/2 + ‖Gυ∗‖2/2 = (υ − υ∗)>G2υ∗ − ‖G(υ − υ∗)‖2/2,

and the condition (4.7) is fulfilled if ‖G(υ − υ∗)‖ is a small number for all υ ∈ Υ0(r0) .

The non-informative prior can be viewed as a limiting case of a Gaussian prior as G→ 0 .

We are interested in quantifying this relation and addressing the question, how small

should G be to ensure the BvM result. It is obvious from the definition of Υ0(r0) that

‖G(υ − υ∗)‖ = ‖GD−10 D0(υ − υ∗)‖ ≤ ‖GD−10 ‖∞ r0 .

Similarly

∣∣(υ − υ∗)>G2υ∗
∣∣ ≤ ‖Gυ∗‖ · ‖G(υ − υ∗)‖ ≤ ‖Gυ∗‖ · ‖GD−10 ‖∞ r0.

Therefore, (4.7) effectively requires that ‖GD−10 ‖∞ r0 is small. A proper choice of r0 is

given by r20 = C(p+ x) yielding the rule “ ‖GD−10 ‖∞ (p+ x)1/2 is small”.

Theorem 4.2. Suppose the conditions of Theorem 4.1. Let also Π = N(0, G−2) be a

Gaussian prior measure on IRp such that

‖Gυ∗‖ ≤ C, G2 ≤ C εD2
0,

and ε (p+ x) is small. Then the BvM result (2.6) of Theorem 2.1 holds.

4.4 Tail posterior probability for full parameter space

The next step in our analysis is to check that υ concentrates in a small vicinity Υ0(r0)

of the central point υ∗ with a properly selected r0 . The concentration properties of the
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posterior will be described by using the random quantity

ρ∗(r0) =

∫
Υ\Υ0(r0) exp

{
L(υ,υ∗)

}
dυ∫

Υ0(r0)
exp
{
L(υ,υ∗)

}
dυ

.

Theorem 4.3. Suppose the conditions of Theorem 4.1. Then it holds on Ω(x)

ρ∗(r0) ≤ exp{♦ε(r0) + ν(r0)}
(

1 + ε

b

)p/2
IP
(
‖γ‖2 ≥ br20

)
,

with

ν(r0)
def
= − log IP

(∥∥γ + ξ
∥∥ ≤ r0

∣∣Y ). (4.8)

Similarly, for each m ≥ 0

ρ∗m(r0)
def
= IE

[
‖Dε(υ − υε)‖m 1I

{
υ 6∈ Υ0(r0)

} ∣∣Y ]
≤ exp{♦ε(r0) + ν(r0)}

(
1 + ε

b

)p/2
IE
[
‖γ‖m 1I

(
‖γ‖2 ≥ br20

)]
,

where υε = υ∗ + D−1ε ξε .

This result yields simple sufficient conditions on the value r0 which ensures the

concentration of the posterior on Υ0(r0) .

Corollary 4.4. Assume the conditions of Theorem 4.3. Then inequality br20 ≥ C(p+ x)

ensures

ρ∗m(r0) ≤ e−x, m = 0, 1, 2.

4.5 Tail posterior probability for target parameter

The next major step in our analysis is to check that θ concentrates in a small vicinity

Θ0(r0) =
{
θ : ‖D̆0(θ−θ∗)‖ ≤ r0

}
of the central point θ∗ = Pυ∗ with a properly selected

r0 . The concentration properties of the posterior will be described by using the random

quantity

ρ(r0)
def
=

∫
Υ exp

{
L(υ,υ∗)

}
π(υ) 1I

{
θ /∈ Θ0(r0)

}
dυ∫

Υ exp
{
L(υ,υ∗)

}
π(υ) 1I

{
θ ∈ Θ0(r0)

}
dυ
.

In what follows we suppose that prior is uniform, i.e. π(υ) ≡ 1 , υ ∈ Υ . This results in

the following representation for ρ(r0) :

ρ(r0) =

∫
Υ exp

{
L(υ,υ∗)

}
1I
{
θ /∈ Θ0(r0)

}
dυ∫

Υ exp
{
L(υ,υ∗)

}
1I
{
θ ∈ Θ0(r0)

}
dυ

. (4.9)
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Obviously IP
(
θ 6∈ Θ0(r0)

∣∣Y ) ≤ ρ(r0) . Therefore, small values of ρ(r0) indicate a small

posterior probability of the large deviation set {θ /∈ Θ0(r0)} . Define

D̆2
ε = (1− ε)D̆2

0, D̆2
ε = (1 + ε)D̆2

0.

Theorem 4.5. Suppose (4.4). Let a random set Ω(x) be such that IP
(
Ω(x)

)
≥ 1−Ce−x

and (4.6) holds on Ω(x) . Then on Ω(x)

ρ(r0) ≤ ρ∗(r0) ≤ exp{♦ε(r0) + ν(r0)}
(

1 + ε

b

)p/2
IP
(
‖γ‖2 ≥ br20

)
,

where ν(r0) is from (4.8). Similarly, for each m ≥ 0

ρ∗m(r0)
def
= IE

[
‖D̆ε(ϑ− θε)‖m 1I

{
ϑ 6∈ Θ0(r0)

} ∣∣Y ]
≤ exp{♦ε(r0) + ν(r0)}

(
1 + ε

b

)p/2
IE
[
‖γ‖m 1I

(
‖γ‖2 ≥ br20

)]
.

4.6 Local Gaussian approximation of the posterior. Upper bound

It is convenient to introduce local conditional expectation: for a random variable η ,

define

IE◦η
def
= IE

[
η 1I
{
θ ∈ Θ0(r0)

} ∣∣Y ].
The following theorem gives exact statement about upper bound of this posterior prob-

ability. Let

θ̆
def
= θ∗ + D̆−10 ξ̆,

θε
def
= θ∗ + D̆−1ε ξ̆ε = θ∗ + (1− ε)−1D̆−10 ξ̆,

where ξ̆ε = D̆−1ε ∇̆θ = (1− ε)−1/2ξ̆ .

Theorem 4.6. Suppose (4.4). Let a random set Ω(x) be such that IP
{
Ω(x)

}
≥ 1−Ce−x

and (4.6) holds on Ω(x) . Then for any f : Rq → R+

IE◦f
(
D̆ε(ϑ− θε)

)
≤ exp

{
∆+

ε (r0)
}
IEf(γ), (4.10)

where γ ∼ N(0, IIq) and

∆+
ε (r0)

def
= ∆ε(r0) +

p

2
log

(
1 + ε

1− ε

)
+ ν(r0) + ρf (r0),

∆ε(r0)
def
= ♦ε(r0) +♦ε(r0) +

(
‖ξε‖2 − ‖ξε‖2

)
/2 ,

ρf (r0)
def
=

∫
Υ\Υ0(r0) exp

{
L(υ,υ∗)

}
f
(
D̆ε(θ − θε)

)
dυ∫

Υ0(r0)
exp
{
L(υ,υ∗)

}
f
(
D̆ε(θ − θε)

)
dυ

.
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The next result considers a special case with f(u) =
∣∣λ>u∣∣2 .

Corollary 4.7. For any λ ∈ IRq

IE◦
∣∣λ>D̆0(ϑ− θ̆)

∣∣2 ≤ exp(∆⊕ε (r0))‖λ‖2, (4.11)

where

∆⊕ε (r0) = ∆+
ε (r0)− log(1− ε) + Cε exp

(
∆+

ε (r0)/2
)
‖ξ̆‖+ Cε2 ‖ξ̆‖2.

On Ω(x) one obtains ∆⊕ε (r0) ≤ C ε p .

Define for random event η ∈ A ⊆ Rq :

IP ◦(η ∈ A) = IE◦ 1I{η ∈ A}.

The next corollary describes an upper bound for the posterior probability.

Corollary 4.8. Let D1 be symmetric q×q matrix such that ‖II−D−11 D̆2
0D
−1
1 ‖∞ ≤ C ε p

and let θ̂ ∈ Rq be such that ‖D̆0(θ̆−θ̂)‖2 ≤ C ε p . Then for any measurable set A ⊂ IRq ,

it holds on Ω(x) with δε
def
= D1(θε − θ̂)

IP ◦
(
D1(ϑ− θ̂) ∈ A

)
≤ exp

{
∆+

ε (r0)
}
IP
(
D1D̆

−1
ε γ + δε ∈ A

)
(4.12)

≤ exp
{
∆+

ε (r0)
}{
IP
(
γ ∈ A

)
+
√
C(ε p + ε2p2q)

}
. (4.13)

4.7 Local Gaussian approximation of the posterior. Lower bound

Let θε = θ∗ + D̆−1ε ξ̆ε , where ξ̆ε = D̆−1ε ∇̆θ . Now we present a local lower bound for the

posterior probability:

Theorem 4.9. Suppose (4.4). Let a random set Ω(x) be such that IP
{
Ω(x)

}
≥ 1−Ce−x

and (4.6) holds on Ω(x) . Then it holds on Ω(x)

IE◦f
(
D̆ε(ϑ− θε)

)
≥ exp

{
−∆−ε (r0)

}
IEf(γ) 1I

{
‖γ‖ ≤ Cr0

}
, (4.14)

where

∆−ε (r0)
def
= ∆ε(r0) +

p

2
log

(
1 + ε

1− ε

)
+ ν(r0) + ρ∗(r0) + 2ρ̃f (r0),

ρ̃f (r0)
def
=

∫
Rp\Υ0(r0) exp

{
Lε(υ,υ

∗)
}
f
(
D̆ε(θ − θε)

)
dυ∫

Υ0(r0)
exp
{
Lε(υ,υ∗)

}
f
(
D̆ε(θ − θε)

)
dυ

.
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This result means that posterior has lower bound which is nearly standard normal up

to (small) multiplicative and additive constants. As a corollary, we state the result for a

quadratic function f . Here we need an additional condition that the r20 ≥ C(p+ x) for

C sufficiently large.

Corollary 4.10. Let r20 ≥ C(p+ x) . For any λ ∈ IRq

IE◦
∣∣λ>D̆0(ϑ− θ̆)

∣∣2 ≥ exp(−∆	ε (r0))‖λ‖2,

where

∆	ε (r0) = ∆−ε (r0) + log(1 + ε) + Cε exp
(
∆−ε (r0)/2

)
‖ξ̆‖+ Cε2 ‖ξ̆‖2 + e−x.

Let D2
1 be a symmetric q × q matrix such that ‖II − D−11 D̆2

0D
−1
1 ‖∞ ≤ C ε p and let

θ̂ ∈ Rq be such that ‖D̆0(θ̆ − θ̂)‖2 ≤ C ε p . Then for any measurable subset A in IRq ,

it holds on Ω(x) with δε = D1(θε − θ̂)

IP ◦
(
D1(ϑ− θ̂) ∈ A

)
≥ exp

{
∆−ε (r0)

}
IP
(
D1D̆

−1
ε γ + δε ∈ A

)
− e−x

≥ exp
{
∆−ε (r0)

}{
IP
(
γ ∈ A

)
−
√
C(ε p + ε2p2q)

}
− e−x.

On Ω(x) , it holds ∆−ε (r0) ≤ C ε p , ∆	ε (r0) ≤ C ε p .

The proof of this Corollary is similar to Corollary 4.8 and Corollary 4.7.

5 Proofs

This appendix collects the proofs of the results.

5.1 Proof of Theorem 4.5

Obviously

{
θ /∈ Θ0(r0), υ ∈ Υ

}
⊂
{
Υ \ Υ0(r0)

}
.

Therefore, it holds for the integral in the nominator of (4.9) in a view of (4.6)∫
Υ

exp
{
L(υ,υ∗)

}
1I
{
θ /∈ Θ0(r0)

}
dυ ≤

∫
Υ\Υ0(r0)

exp
{
L(υ,υ∗)

}
dυ.

For the local integral in the denominator, the inclusion Υ0(r0) ⊂
{
θ ∈ Θ0(r0),υ ∈ Υ

}
and (4.6) imply∫

Υ
exp
{
L(υ,υ∗)

}
1I
{
θ ∈ Θ0(r0)

}
dυ ≥

∫
Υ0(r0)

exp
{
L(υ,υ∗)

}
dυ.
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Finally

ρ(r0) =

∫
Υ exp

{
L(υ,υ∗)

}
1I
{
θ /∈ Θ0(r0)

}
dυ∫

Υ exp
{
L(υ,υ∗)

}
1I
{
θ ∈ Θ0(r0)

}
dυ
≤

∫
Υ\Υ0(r0) exp

{
L(υ,υ∗)

}
dυ∫

Υ0(r0)
exp
{
L(υ,υ∗)

}
dυ

= ρ∗(r0),

and the assertion follows from Theorem 4.3.

5.2 Proof of Theorem 4.6

We use that Lε(υ,υ
∗) = ξ>ε Dε(υ−υ∗)−‖Dε(υ−υ∗)‖2/2 is proportional to the density

of a Gaussian distribution and similarly for Lε(υ,υ
∗) . More precisely, define

mε(ξε)
def
= −‖ξε‖2/2 + log(detDε)− p log(

√
2π). (5.1)

Then

mε(ξε) + Lε(υ,υ
∗)

= −‖Dε(υ − υ∗)− ξε‖2/2 + log(detDε)− p log(
√

2π)

is (conditionally on Y ) the log-density of the normal law with the mean υε = D−1ε ξε+υ∗

and the covariance matrix D−2ε . If we perform integration and leave only θ part of υ

then mε(ξε) + Lε(υ,υ
∗) is (conditionally on Y ) the density of the normal law with

the mean θε = D̆−1ε ξ̆ε + θ∗ and the covariance matrix D̆−2ε . So, for any nonnegative

function f : Rq → R+ we get∫
Υ

exp
{
L(υ,υ∗) +mε(ξε)

}
f
(
D̆ε(θ − θε)

)
dυ

=

∫
Υ0(r0)

exp
{
L(υ,υ∗) +mε(ξε)

}
f
(
D̆ε(θ − θε)

)
dυ

+

∫
Υ\Υ0(r0)

exp
{
L(υ,υ∗) +mε(ξε)

}
f
(
D̆ε(θ − θε)

)
dυ

=
(
1 + ρf (r0)

) ∫
Υ0(r0)

exp
{
L(υ,υ∗) +mε(ξε)

}
f
(
D̆ε(θ − θε)

)
dυ

≤ e♦ε+ρf (r0)

∫
Υ0(r0)

exp
{
Lε(υ,υ

∗) +mε(ξε)
}
f
(
D̆ε(θ − θε)

)
dυ

≤ e♦ε+ρf (r0)

∫
Rp

exp
{
Lε(υ,υ

∗) +mε(ξε)
}
f
(
D̆ε(θ − θε)

)
dυ

= e♦ε(r0)+ρf (r0) IEf(γ).
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Thus, ∫
Υ

exp
{
L(υ,υ∗)

}
f
(
D̆ε(θ − θε)

)
dυ

≤ exp{♦ε(r0)−mε(ξε) + ρf (r0)} IEf(γ). (5.2)

Similarly, mε(ξε) is defined by (5.1) with ε in place of ε , and the value mε(ξε) +

Lε(υ,υ
∗) is (conditionally on Y ) the density of the normal law with the mean υε =

D−1ε ξε + υ∗ and the covariance matrix D−2ε . So, it holds∫
Υ

exp
{
L(υ,υ∗)

}
dυ ≥

∫
Υ0(r0)

exp
{
L(υ,υ∗)

}
dυ

≥ exp{−♦ε(r0)−mε(ξε)}
∫
Υ0(r0)

exp
{
Lε(υ,υ

∗) +mε(ξε)
}
dυ. (5.3)

Further, by construction, D2
ε ≥ D2

0 and ‖ξε‖ ≤ ‖ξ‖ , yielding

{
D−1ε

(
u+ ξε

)
∈ Υ0(r0)

}
=
{∥∥D0D

−1
ε

(
u+ ξε

)∥∥ ≤ r0
}
⊃
{
‖u+ ξ‖ ≤ r0

}
.

Hence, inequality (5.3) implies by definition of ν(r0) :∫
Υ

exp{L(υ,υ∗)} dυ ≥ exp
{
−♦ε(r0)−mε(ξε)− ν(r0)

}
. (5.4)

Now (5.2) and (5.4) imply∫
Υ exp

{
L(υ,υ∗)

}
f
(
D̆ε(θ − θε)

)
dυ∫

Υ exp
{
L(υ,υ∗)

}
dυ

≤ exp
{
♦ε(r0) +♦ε(r0) +mε(ξε)−mε(ξε) + ν(r0) + ρf (r0)

}
IEf(γ)

and (4.10) follows by definition of mε(ξε) , mε(ξε) , ∆ε(r0) and ∆+
ε (r0) .

5.3 Proof of Corollary 4.7

As a direct implication of (4.10) one easily gets

IE◦
∣∣λ>D̆ε(ϑ− θε)

∣∣2 ≤ exp(∆+
ε (r0))‖λ‖2. (5.5)

Furthermore,

IE◦
∣∣λ>D̆0(ϑ− θ̆)

∣∣2
= (1− ε)−1IE◦

∣∣∣λ>D̆ε(ϑ− θε) +
ε

1− ε
λ>ξ̆

∣∣∣2
≤ 1

1− ε
IE◦
∣∣λ>D̆ε(ϑ− θε)

∣∣2 +
2ε|λ>ξ̆|
(1− ε)2

IE◦
∣∣λ>D̆ε(ϑ− θε)

∣∣+
ε2|λ>ξ̆|2

(1− ε)3
.
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This, bound (5.5) and the elementary inequality ea + b ≤ ea+b for a, b ≥ 0 , imply for

ε ≤ 1/2

IE◦
∣∣λ>D̆0(ϑ− θ̆)

∣∣2
≤
[
exp
(
∆+

ε (r0)− log(1− ε)
)

+ Cε exp
(
∆+

ε (r0)/2
)
‖ξ̆‖+ Cε2‖ξ̆‖2

]
‖λ‖2

≤ exp
(
∆+

ε (r0)− log(1− ε) + Cε exp
(
∆+

ε (r0)/2
)
‖ξ̆‖+ Cε2‖ξ̆‖2

)
‖λ‖2

and (4.11) follows from definition of ∆+
ε (r0) . It can be easily shown that on Ω(x)

∆+
ε (r0) ≤ Cεp . The only important step is to show that ρx2(r0) is small. It follows

ρx2(r0) =

∫
Υ\Υ0(r0)

∣∣λ>D̆ε(θ − θε)
∣∣2 exp

{
L(υ,υ∗)

}
dυ∫

Υ0(r0)

∣∣λ>D̆ε(θ − θε)
∣∣2 exp

{
L(υ,υ∗)

}
dυ

≤

∫
Υ\Υ0(r0)

∣∣λ>D̆ε(θ − θε)
∣∣2 exp

{
−b‖D0(υ − υ∗)‖2/2

}
dυ∫

Υ0(r0)

∣∣λ>D̆ε(θ − θε)
∣∣2 exp

{
Lε(υ,υ∗)

}
dυ

=

∫
Υ\Υ0(r0)

∣∣λ>ε Dε(υ − υ∗)
∣∣2 exp

{
−b‖D0(υ − υ∗)‖2/2

}
dυ∫

Υ0(r0)

∣∣λ>ε Dε(υ − υε)
∣∣2 exp

{
Lε(υ,υ∗)

}
dυ

≤ C

∫
Rp\Υ0(r0)

∣∣λ>0 D0(υ − υ∗)
∣∣2 exp

{
−b‖D0(υ − υ∗)‖2/2

}
dυ∫

Υ0(r0)

∣∣λ>ε Dε(υ − υε)
∣∣2 exp

{
Lε(υ,υ∗)

}
dυ

≤ C
IE
∣∣λ>0 γ∣∣2 1I{‖γ‖ > Cr0}

IE
∣∣λ>ε γ∣∣2 1I{‖γ‖ < Cr0}

= C(1 + ε)
IE
∣∣λ>0 γ∣∣2 1I{‖γ‖ > Cr0}

IE
∣∣λ>0 γ∣∣2 1I{‖γ‖ < Cr0}

,

where

λ0 = D−10

(
D̆ελ

0

)
, λε = D−1ε

(
D̆ελ

0

)
= (1− ε)−1/2λ0,

and similarly for λε , and 0 is a zero vector of dimension (p−q) . A choice of r20 = C(p+x)

with a proper absolute constant C ensures that ρx2(r0) ≤ e−x .

5.4 Proof of Corollary 4.8

The first statement (4.12) follows from Theorem 4.6 with f(u) = 1I
(
D1D̆

−1
ε u+δε ∈ A

)
.

Further, it holds on Ω(x) for δε
def
= D1(θε − θ̂)

‖δε‖2 = ‖D1(θε − θ̂)‖2 ≤ (1 + C ε p)‖D̆0(θε − θ̂)‖2

≤ (1 + C ε p)
(
‖D̆0(θε − θ̆)‖2 + ‖D̆0(θ̆ − θ̂)‖2

)
≤ (1 + C ε p)

(
4ε2‖ξ̆‖2 + C ε p

)
≤ C(ε2q + ε p). (5.6)
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For proving (4.13), we compute the Kullback–Leibler divergence between two multivariate

normal distributions and apply Pinsker’s inequality. Let γ be standard normal in IRq ,

and IP0 stand for its distribution. The random variable D1D̆
−1
ε γ + δε is normal with

mean δε and variance B−1ε
def
= D1D̆

−2
ε D1 . Denote this distribution by IPε . Obviously

‖IIq −Bε‖∞ = ‖IIq −D−11 D̆2
εD
−1
1 ‖∞ = ‖IIq − (1− ε)D−11 D̆2

0D
−1
1 ‖∞

which implies ‖Bε − IIq‖∞ ≤ C ε p . We use the following technical lemma.

Lemma 5.1. Let ‖Bε − IIq‖∞ ≤ αε ≤ 1/2 . Then

2K(IP0, IPε) = −2IE0 log
dIPε

dIP0
(γ)

≤ tr(Bε − IIq)2 + (1 + αε)‖δε‖2 = α2
ε q + (1 + αε)‖δε‖2.

Proof. It holds

2 log
dIPε

dIP0
(γ) = − log det(Bε)− (γ − δε)>Bε(γ − δε) + ‖γ‖2

and

2K(IP0, IPε) = −2IE0 log
dIPε

dIP0
(γ)

= log det(Bε) + tr(Bε − IIq) + δ>ε Bεδε.

Denote by aj the j th eigenvalue of Bε − IIq . Then ‖Bε − IIq‖∞ ≤ αε ≤ 1/2 yields

|aj | ≤ 1/2 and

2K(IP0, IPε) = δ>ε Bεδε +

q∑
j=1

{
aj − log(1 + aj)

}
≤ (1 + αε)‖δε‖2 +

q∑
j=1

a2j

≤ (1 + αε)‖δε‖2 + tr(Bε − IIq)2 ≤ (1 + αε)‖δε‖2 + α2
ε q.

as required.

This lemma with αε = C ε p ≤ C and (5.6) imply by Pinsker’s inequality

‖IP0 − IPε‖2TV ≤
1

2
K(IP0, IPε) ≤ C(ε2q + ε p) + C ε2p2 q ≤ C(ε p + ε2p2q).

Equivalently, for any measurable set A , it holds

IP
(
D1D̆

−1
ε γ + δε ∈ A

∣∣Y ) ≤ IP (γ ∈ A)+
√
C(ε p + ε2p2q).
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5.5 Proof of Theorem 4.9

As in proof of Theorem 4.6, consider mε(ξε) which is defined by (5.1) with ε in place

of ε . The sum mε(ξε) + Lε(υ,υ
∗) is conditionally on Y the log-density of the normal

law of υ = (θ,η) . Its θ -marginal obtained by integration w.r.t. η is again the normal

density with the mean θε = D̆−1ε ξ̆ε + θ∗ and the covariance matrix D̆−2ε . So, for any

nonnegative function f : Rq → R+ , it holds∫
Υ

exp
{
L(υ,υ∗)

}
f
(
D̆ε(θ − θε)

)
1I
{
θ ∈ Θ0(r0)

}
dυ

≥
∫
Υ0(r0)

exp
{
L(υ,υ∗)

}
f
(
D̆ε(θ − θε)

)
dυ

≥ exp{−♦ε −mε(ξε)}
∫
Υ0(r0)

exp
{
Lε(υ,υ

∗)
}
f
(
D̆ε(θ − θε)

)
dυ

≥ exp{−♦ε −mε(ξε)}
∫
Rp

exp
{
Lε(υ,υ

∗)
}
f
(
D̆ε(θ − θε)

)
dυ

− exp{−♦ε −mε(ξε)}
∫
Rp\Υ0(r0)

exp
{
Lε(υ,υ

∗)
}
f
(
D̆ε(θ − θε)

)
dυ

= exp{−♦ε −mε(ξε)}(1− ρ̃f )

∫
Rp

exp
{
Lε(υ,υ

∗)
}
f
(
D̆ε(θ − θε)

)
dυ

≥ exp{−♦ε −mε(ξε)}(1− ρ̃f )

∫
Θ0(r0)×R(p−q)

exp
{
Lε(υ,υ

∗)
}
f
(
D̆ε(θ − θε)

)
dυ

≥ exp{−♦ε −mε(ξε)− 2ρ̃f} IEf(γ) 1I{‖γ‖ ≤ Cr0}, (5.7)

Here we used that 1− α ≥ e−2α for 0 ≤ α ≤ 1
2 . Similarly,

∫
Υ

exp
{
L(υ,υ∗)

}
dυ =

∫
Υ0(r0)

exp
{
L(υ,υ∗)

}
dυ +

∫
Υ\Υ0(r0)

exp
{
L(υ,υ∗)

}
dυ

= {1 + ρ∗(r0)}
∫
Υ0(r0)

exp
{
L(υ,υ∗)

}
dυ

≤ {1 + ρ∗(r0)} exp{♦ε −mε(ξε)} IP
(∥∥D0D

−1
ε (γ + ξε)

∥∥ ≤ r0
∣∣Y ).

Further, by construction, D2
ε ≤ D2

0 and ‖ξε‖ ≥ ‖ξ‖ , yielding

{
D−1ε

(
u+ ξε

)
∈ Υ0(r0)

}
=
{∥∥D0D

−1
ε

(
u+ ξε

)∥∥ ≤ r0
}
⊂
{
‖u+ ξ‖ ≤ r0

}
,

and finally ∫
Υ

exp
{
L(υ,υ∗)

}
dυ ≤ exp{♦ε −mε(ξε) + ν(r0) + ρ∗(r0)}. (5.8)
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The bounds (5.7) and (5.8) imply∫
Υ exp

{
L(υ,υ∗)

}
f
(
D̆ε(θ − θε)

)
dυ∫

Υ exp
{
L(υ,υ∗)

}
dυ

≥
exp{−♦ε −mε(ξε)− 2ρ̃f} IEf(γ) 1I{‖γ‖ ≤ Cr0}

exp
{
♦ε −mε(ξε) + ν(r0) + ρ∗(r0)

}
≥

exp{−∆ε − κε − 2ρ̃f}IEf(γ) 1I{‖γ‖ ≤ Cr0}
exp{ν(r0) + ρ∗(r0)

.

This yields (4.14).

5.6 Proof of Theorem 2.1

Due to our previous results, it is convenient to decompose the r.v. ϑ in the form

ϑ = ϑ 1I
{
ϑ ∈ Θ0(r0)

}
+ ϑ 1I

{
ϑ 6∈ Θ0(r0)

}
= ϑ◦ + ϑc.

The large deviation results yields that the posterior distribution of the part ϑc is neg-

ligible provided a proper choice of r0 . Below we show that ϑ◦ is nearly normal which

yields the BvM result. Define

ϑ◦
def
= IE◦ϑ, S2

◦
def
= Cov(ϑ◦)

def
= IE◦

{
(ϑ− ϑ◦)(ϑ− ϑ◦)>

}
.

It suffices to show that holds on Ω(x)

‖D̆0(ϑ◦ − θ̆)‖2 ≤ C∆∗ε∥∥IIq − D̆0S
2
◦D̆0

∥∥
∞ ≤ C∆∗ε,

where ∆∗ε = max
{
∆⊕ε , ∆

	
ε

}
≤ C ε p .

Consider η
def
= D̆0(ϑ− θ̆) . Corollaries 4.7 and 4.10 yield for any λ ∈ IRq that

‖λ‖2 exp(−∆−) ≤ IE◦
∣∣λ>η∣∣2 ≤ ‖λ‖2 exp(∆+) (5.9)

with ∆− = ∆	ε and ∆+ = ∆⊕ε . Define the first two moments of η :

η
def
= IE◦η, S2

◦
def
= IE◦

{
(η − η)(η − η)>

}
= D̆0S

2
◦D̆0.

Use the following technical statement.

Lemma 5.2. Assume (5.9). Then with ∆∗ = max
{
∆+, ∆−

}
≤ 1/2

‖η‖2 ≤ C∆∗, ‖S2
◦ − IIq‖∞ ≤ C∆∗. (5.10)
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Proof. Let u be any unit vector in IRq . We obtain from (5.9)

exp(−∆−) ≤ IE◦
∣∣u>η∣∣2 ≤ exp(∆+).

Note now that

IE◦
∣∣u>η∣∣2 = u>S2

◦u+ |u>η|2.

Hence

exp(−∆−) ≤ u>S2
◦u+ |u>η|2 ≤ exp(∆+). (5.11)

In a similar way with u = η/‖η‖ and γ ∼ N(0, IIq)

IE◦
∣∣u>(η − η)

∣∣2 ≥ e−∆
−
IE
∣∣u>(γ − η)

∣∣2 = e−∆
−(

1 + ‖η‖2
)

yielding

u>S2
◦u ≥

(
1 + ‖η‖2

)
exp(−∆−).

This inequality contradicts (5.11) if ‖η‖2 > 2∆∗ > 1 , and (5.10) follows.

The bound for the first moment implies with ϑ◦ = IE◦ϑ∥∥D̆0(ϑ◦ − θ̆)
∥∥2 ≤ C∆∗ε

while the second bound yields with∥∥D̆0S
2
◦D̆0 − IIq

∥∥
∞ ≤ C∆∗ε.

The last result follows from Corollary 4.8 and 4.10 with D1 = S−1 and θ̂ = ϑ .

5.7 Proof of Theorem 3.1

The bracketing bound and the large deviation result of Theorem 4.1 apply if the sample

size n fulfills n ≥ C(pn + x) for a fixed constant C . It appears that the BvM result

requires a stronger condition. Indeed, in the regular i.i.d. case it holds

δ(r0) � r0/
√
n, ω(r0) � r0/

√
n.

The radius r0 should fulfill r20 ≥ C(pn + x) to ensure the large deviation result. This

yields

ε = δ(r0) + 3ν0a
2ω(r0) ≥ C

√
(pn + x)/n.

If we fix x = Cpn , our BvM result requires the condition “ ε pn is small”, which effectively

means that p3n/n→ 0 as n→∞ .
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5.8 Proof of Theorem 3.2

First we check that the required conditions of Section 4.1 are fulfilled in the considered

example. This can be easily done if we slightly change the definition of the local set

Υ0(r0) . Namely, for u∗ = (u∗1, . . . , u
∗
pn)> , define Υ0(

√
z) as a rectangle

Υ0(
√
z)

def
=
{
u : MnK(uj , u

∗
j ) ≤ z, j = 1, . . . , pn

}
.

Here K(u, u∗) is the Kullback-Leibler divergence for the Poisson family:

K(u, u∗) = eu(u− u∗)− eu + eu
∗
.

Lemma 5.3. Let zn be such that 2pne−zn ≤ 1/2 . Then it holds

IP
(
ũ ∈ Υ0(

√
zn)
)
≥ 1− 4pne−zn . (5.12)

In particular, the choice zn = xn + log(pn) with xn = C log n provides

IP
(
ũ ∈ Υ0(

√
zn)
)
≥ 1− 4e−xn . (5.13)

Proof. We use the bound from Polzehl and Spokoiny (2006)

IP
(
MnK(ũj , u

∗
j ) > zn

)
≤ 2e−zn .

This yields

IP
(
ũ ∈ Υ0(

√
zn)
)
≥
(
1− 2e−zn

)pn .
Now the elementary inequalities log(1 − α) ≥ −2α for 0 ≤ α ≤ 1/2 and e−δ ≥ 1 − δ
for δ ≥ 0 applied with αn = 2e−zn and δn = 2αnpn imply

(1− αn)pn = elog(1−αn)pn ≥ e−2αnpn ≥ 1− 2αnpn

and (5.12) follows.

In the special case u∗1 = . . . = u∗pn = u∗ , the set Υ0(
√
z) is a cube which can be also

viewed as a ball in the sup-norm. Moreover, if zn/(Mneu
∗
) ≤ 1/2 , this cube is contained

in the cube
{
u : ‖u − u∗‖∞ ≤

√
zn/(Mneu∗)

}
in view of ex − 1 − x ≤ a2 ≤ 1/2 for

|x| ≤ a ≤ 1 . The concentration bound (5.13) enables us to check the local conditions

only on the cube Υ0(
√
zn) . Especially the condition (ED1) is trivially fulfilled because

ζ(u) = L(u)− IEL(u) is linear in u and θ is a linear functional of u . Condition (L0)

can be checked on Υ0(
√
zn) with δ(zn) =

√
zn/(Mneu∗) .

It remains to compute the value D̆2
0 .
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Lemma 5.4. Let v∗ = 1/pn . Then it holds

D̆2
0 = p2nβ

−2
n .

Now we are ready to finalize the proof Theorem 3.2.

Proof. Let βn be bounded. The definition implies

pn
(
θ − θ̃n

)
=

pn∑
j=1

log

(
υj

Zj/Mn

)

The posterior distribution υj
∣∣Y is Gamma(αj , µj) with αj = 1+Zj and µj = µ

Mnµ+1 .

We use following decomposition

υj
Zj/Mn

=
Mnµjαj
αj − 1

(
1 + α

−1/2
j γj

)
,

where

γj
def
= (αjµ

2
j )
−1/2(υj − αjµj)

has zero mean and unit variance. We can use the Taylor expansion

pn
(
θ − θ̃n

)
=

pn∑
j=1

log

(
1− 1

Mnµ+ 1

)
+

pn∑
j=1

log

(
1 +

1

αj − 1

)
+

pn∑
j=1

log

(
1 + α

−1/2
j γj

)
.

Now let’s take into account properties of real data distribution.

αj =
Mn

pn

(
1 +

√
pn
Mn

δj

)
,

where δj is asymptotically standard normal.

Suppose now that β3n/
√
pn → 0 as pn →∞ . Then Mn/pn =

(√
pn/β

3
n

)2/3
p
2/3
n →∞

as pn → ∞ . Thus for pn sufficient large, αj ≈ Mn/pn . Moreover, it holds for pn

sufficiently large that maxj=1,...,pn α
−1/2
j |γj | ≤ 1/2 with a high probability. Below we

can restrict ourselves to the case when α
−1/2
j |γj | ≤ 1/2 . This allows to use the Taylor

expansion

pn
(
θ − θ̃n

)
=

pn∑
j=1

log

(
1− 1

Mnµ+ 1

)
+

pn∑
j=1

log

(
1 +

1

αj − 1

)
+

pn∑
j=1

log
(
1 +

γj√
αj

)

=

pn∑
j=1

1

αj − 1
+

pn∑
j=1

1
√
αj
γj −

pn∑
j=1

1

2αj
γ2j +R.

One can easily check that the remainder R is of order β3n/
√
pn → 0 . Moreover,

p
−1/2
n

∑pn
j=1 γj is asymptotically standard normal, while p−1n

∑pn
j=1 γ

2
j

IP−→ 1 . CLT here
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can be easily checked because of the Lyapunov condition being valid. Also
∑pn

j=1(αj −
1)−1 = p2n

Mn
+ on(β2n) . Now check what happens if βn → 0

β−1n pn
(
θ − θ̃n

)
= βn +

1
√
pn

pn∑
j=1

γj −
βn
2pn

pn∑
j=1

γ2j + on(1)
w−→ N(0, 1).

Similarly, with βn ≡ β ,

β−1pn
(
θ − θ̃n

)
= β +

1
√
pn

pn∑
j=1

γj −
βn
2pn

pn∑
j=1

γ2j + on(1)
w−→ N(β/2, 1).

This proves the result for βn ≡ β . Finally in the case when βn grows to infinity, but

β3n/
√
pn → 0 , then β−1n (θ − θ̃n)

IP−→∞ .

5.9 Proof of Lemma 5.4

Proof. Let uj = uj − u∗j . Then

L(u,u∗) = L(u)− L(u∗) =

pn∑
j=1

{
Zjuj −Mnp

−1
n (euj − 1)

}
.

The expected value of Zj is Mn/pn which leads to following expectation of likelihood:

IEL(u,u∗) =
Mn

pn

pn∑
j=1

(
uj − (euj − 1)

)
= −Mn

pn

pn∑
j=1

u2j
2

+O
(
‖u‖3

)
.

Then we substitute u1 = pnθ −
∑pn

j=2 uj , where θ = θ − θ∗ . Thus we get

IEL(u,u∗) = −Mn

pn

1

2

(
pnθ −

pn∑
j=2

uj
)2 − Mn

pn

pn∑
j=2

u2j
2

+O
(
‖u‖3

)
.

This Taylor expansion allows us compute components of Fisher information matrix:

D2
0 = −∇2IEL(u∗) =

Mn

pn



p2n −pn . . . . . . −pn
−pn 2 1 . . . 1

... 1
. . .

. . .
...

...
...

. . .
. . . 1

−pn 1 . . . 1 2


The Fisher information for the target parameter θ can be computed as follows:

D̆2
0 = Mnpn

(
1− e>Q−1e

)
,
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where e = (1, . . . , 1)> and Q = II + E with E = ee> being the matrix of ones of size

(pn − 1)× (pn − 1) . It follows

e>Q−1e = tr
(
e>Q−1e

)
= tr

(
Q−1ee>

)
= tr

(
(E + II)−1E

)
.

Further, (E + II)−1E = II − (E + II)−1 yielding

e>Q−1e = tr
{
II − (E + II)−1

}
= (pn − 1)− tr

{
(E + II)−1

}
= (pn − 1)−

pn∑
j=1

λj ,

where λj are eigenvalues of matrix (E + II)−1 . It is easy to see that λ1 = p−1n while

λ2 = · · · = λpn−1 = 1 . Thus

e>Q−1e = (pn − 1)−
{
p−1n + (pn − 2)

}
= 1− p−1n ,

D̆2
0 = Mnpn

(
1− e>Q−1e

)
= Mnpn

{
1− (1− p−1n )

}
= Mn = p2nβ

−2
n ,

which completes the proof.
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