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The prominent Bernstein-von Mises (BvM) Theorem claims that the posterior measure is
asymptotically normal with the mean close to the maximum likelihood estimator (MLE) and
the variance close to the variance of the MLE (inverse total Fisher information matrix). The
BvM result provides a theoretical background for Bayesian computations of the MLE and its
variance. Also it justifies usage of elliptic credible sets based on the first two moments of the
posterior.

The classical version of the BvM Theorem is stated for the standard parametric setup with
a fixed parametric model and large samples. Modern statistical problems require to consider
situations with very complicated models involving a lot of parameters and with limited sample
size. Many statistical problem can be viewed as problems of semiparametric estimation when
the unknown data distribution is described by a high or infinite dimensional parameter while
the target is of low dimension [1, 2]. Typical examples are provided by functional estimation,
estimation of a function at a point, or simply by estimating a given subvector of the parameter
vector. In this paper we concentrate on BvM result for semiparametric case with special
attention paid to proportion between dimension of full parameter space and sample size. This
value is shown to be crucial for BvM result to be valid.

The results are based on recent paper [3] which offers a new look at the classical LAN
theory. The basic idea is replace local approximation by local majorization which allows to
use much larger neighborhoods than in the LAN approach. In the paper [4] it is shown that the
local nonasymptotic quadraticity approach of [3] can be used for obtaining a nonasymptotic
version of Bernstein-von Mises theorem. In this paper we make a step further to obtain
non-asymptotic semiparametric result.

Let Y denote the observed random data, and IP denote the data distribution. The
parametric statistical model assumes that the unknown data distribution IP belongs to a
given parametric family (IPυ) :

Y ∼ IP = IPυ∗ ∈ (IPυ, υ ∈ Υ ),

where Υ is some possibly infinite dimensional parameter space. In the semiparametric frame-
work, the target of analysis is only a finite dimensional component θ of the whole parameter
υ . This means that the target of estimation is

θ∗ = Pυ∗,

for some mapping P : Υ → IRp , and p ∈ N stands for the dimension of the target.
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Usually in the classical semiparametric setup, the vector υ is represented as υ = (θ,η) ,
where θ is the target of analysis while η is the nuisance parameter. We refer to this situation
as (θ,η) -setup and our presentation follows this setting. An extension to the υ -setup with
θ = Pυ is straightforward.

Let’s suppose that the parameter set Υ can be represented as follows: Υ = Θ ×H . Let
Π be a prior measure on the parameter set Υ and π(υ) is corresponding density w.r.t. to
the uniform σ -finite measure on Υ : Π(dυ) = π(υ)dυ . In this paper we are interested in
target component of full parameter and study corresponding marginal posterior distribution

ϑ | Y ∝
∫
H

exp
{
L(υ)

}
π(υ)dη.

An important feature of the posterior distribution is that it is entirely known and can be
numerically assessed. If we know in addition that the posterior is nearly normal, it suffices to
compute its mean and variance for building the concentration and credible sets. Define

ϑ
def
= IE

(
ϑ
∣∣Y ), S2 def

= Cov(ϑ)
def
= IE

{
(ϑ− ϑ)(ϑ− ϑ)>

∣∣Y }.
Both quantities are data dependent. Here we present a version of the BvM result which claims
that ϑ is close to the MLE θ̃ , S2 is nearly equal to inverse of total Fisher information matrix,
and S−1

(
ϑ− ϑ

)
is nearly standard normal conditionally on Y .

Theorem 0.1. It holds with high probability that

‖D̆0(ϑ− θ̃)‖2 ≤ C τ,
∥∥IIp − D̆0S

2D̆0

∥∥
∞ ≤ C τ,

where D̆2
0 = Ĭ(υ∗) is an analog of total Fisher information matrix in semiparametric case, C

is universal constant and τ is (small) value depending on properties of likelihood and sample
size.

Moreover, for any λ ∈ IRp with ‖λ‖2 ≤ p∣∣∣log IE
[
exp
{
λ>S−1(ϑ− ϑ)

} ∣∣Y ]− ‖λ‖2/2∣∣∣ ≤ C τ.

We conclude that the BvM Theorem requires “ τ is small” and it can be shown that τ is
of order (p∗)3/2/n1/2 , where p∗ is dimension of full parameter. Thus we come to the notion
of critical dimension. Namely we assume that the total dimension p∗ grows with the sample
size n and write p∗ = pn . Theorem 1 requires that pn = o(n1/3) . We present an example for

which p
3/2
n /n1/2 ≥ β > 0 and the BvM result is not valid.
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