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Abstract. It is commonly the case in multi-modal pattern recognition
that certain modality-specific object features are missing in the training
set. We address here the missing data problem for kernel-based Support
Vector Machines, in which each modality is represented by the respective
kernel matrix over the set of training objects, such that the omission of
a modality for some object manifests itself as a blank in the modality-
specific kernel matrix at the relevant position. We propose to fill the
blank positions in the collection of training kernel matrices via a vari-
ant of the Neutral Point Substitution (NPS) method, where the term
”neutral point” stands for the locus of points defined by the ”neutral
hyperplane” in the hypothetical linear space produced by the respective
kernel. The current method crucially differs from the previously devel-
oped neutral point approach in that it is capable of treating missing
data in the training set on the same basis as missing data in the test set.
It is therefore of potentially much wider applicability. We evaluate the
method on the Biosecure DS2 data set.

1 Introduction

It is well-established that the classification performance of modality-specific
classifiers can be improved by combining several different object-representation
modalities within a single pattern-recognition procedure. This fusion may be
performed at the early or late stage. In the former case of early fusion [1, 2], the
growing overall dimensionality of the object representation with increasing the
number of modalities can be reduced by incorporating some form of modality-
selection within the final classification procedure [3, 4], thereby eliminating the
danger of over-fitting. Such modality-selectivity is correlated with the general-
ization performance of the training process, so that, if performed ideally, the
recognition system user is free to include object-representation modalities with-
out constraint.



This freedom creates a new difficulty – the greater the number of modalities
employed for comprehensive object representation, the more likely is the omission
of some modality-specific feature in the available data.

The problem of missing features has been intensively studied in the pat-
tern recognition literature. However, the aspect of combining diverse pattern-
recognition modalities makes special demands on the method of handling blanks
in object information.

In [1], three levels of fusing several biometric modalities are compared:

– sensor level, when what is fused are signals acquired immediately from sensors
forming different initial object representations;

– classifier score level, that presupposes fusion of scores of multiple classifiers as
preliminary decisions made from different modalities to be combined;

– decision level, implying fusion of final decisions made separately by single classifiers

on the basis of each modality.

Practically all known methods of compensating for missing data tacitly ad-
dress the latter two levels of combining modalities [5, 6] and boil down to replac-
ing the missing features via some surrogate values or designing a fusion classifier
for all possible combinations of observable features.

At the same time, it is noted in [1] that the sensor level of fusing modalities
can potentially yield better results if it is possible to find an appropriate algo-
rithm for combining signals of incomparable physical type. One such algorithm
is given in [2] under the assumption that a kernel-based methodology is utilized
to obtain a recognition rule for each particular modality, for which a discrimi-
nant hyperplane is specified in the linear space associated with each modality. In
this case, the kernel trick [11, 12] transforms the problem of combining diverse
modalities with missing data into that of appropriately treating blanks in the
modality-specific kernel matrices when fusing them into a unified matrix.

Two types of incomplete data samples are to be distinguished – those in the
training set, during the classifier learning stage, and those in the test set, when
the classifier is already operational.

For the latter case, it was proposed in [8] to adopt the neutral point sub-
stitution (NPS) method originally developed in [7] as a means of kernel-based
combining of disjoint multi-modal training data, i.e., when only one feature is
known for each object. Important advantages of the NPS method are that it is
implicitly incorporated into the SVM training framework and it is free from the
necessity of inventing any heuristic surrogates for replacing the missing data. It
is shown in [8] that the omission of features of the given object at the testing
stage is theoretically equivalent, in the case of completely disjoint data sets, to
the sum-rule fusion of classifiers within the available modalities [9].

However, the NPS method of treating missing object representations does
not lend itself, in its original version, to immediate extension to the training
stage (except in the degenerate case of completely disjoint data). The purpose
of this paper is to fill in this gap while retaining the advantages of a strictly
mathematical approach to the missing-data problem for the case of training sets
with a more typical density of blanks.



As the data source for experiments, we use the publicly available biometric
database Biosecure DS2 [10].

2 Inferring a modality-specific kernel-based classifier

from an unbalanced training set

2.1 Modality-specific kernel functions

Let each real world object ω ∈ Ω be represented by several characteristics
(features) measured by respective sensors in sensor-specific scales xi(ω) : Ω →
Xi, i ∈ I, where I = {1, . . . , n} is the set of sensors. It is typical in the practice
of data analysis that the signals of the initial sensors are of different physical na-
tures and hardly lend themselves to joint treatment. We keep in this paper to the
kernel-based approach to combining arbitrary object-representation modalities
under the basic assumption that a modality-specific kernel function Ki

(

x′
i, x

′′
i

)

is defined in the output scale of each particular sensor [2].
A kernel is a symmetric two-argument function Ki

(

x′
i, x

′′
i

)

: Xi × Xi → R,

which forms a positive semidefinite matrix
[

Ki

(

xi(ωj), xi(ωl)
)

; j, l = 1, . . . ,m
]

for each finite collection of objects {ωj , j =1, ...,m} [11]. Any kernel Ki

(

x′
i, x

′′
i

)

embeds the scale of the respective sensor Xi into a hypothetical linear space Xi ⊆
X̃i, in which the null element and linear operations are defined in a particular
way [12]:

φi ∈ X̃i, x′
i + x′′

i : X̃i × X̃i → X̃i, cxi : R × X̃i → X̃i.

The role of inner product is played by the symmetric kernel function itself, which
is inevitably bilinear Ki

(

α′x′
i + α′′x′′

i , xi

)

= α′Ki

(

x′
i, xi

)

+ α′′Ki

(

x′′
i , xi

)

.
The major convenience factor of the kernel-based approach to data analy-

sis is its ability to provide the constructor of a data-analysis system with the
possibility of working with objects of arbitrary nature in unified terms of linear
functions f(ω) = f(xi(ω)) : Ω → Xi → Y, where Y is any desired linear space.
More strictly, the carrier of kernel-specific linear functions is not the feature
scale Xi itself, but rather its linear closure Xi⊆ X̃i→Y.

However, it should be kept in mind that X̃i is thus a hypothetical linear space
deriving from the kernel trick, in contrast to its observable subset Xi ⊆ X̃i which
is the output scale of a particular sensor associated with its respective feature
xi(ω) ∈ Xi relating to the set of real-world objects ω ∈ Ω.

In particular, to determine a scalar linear function fi(x) : X̃i → R, it is
enough to specify a direction element (vector, in linear-space terms) ai ∈ X̃i

and a numerical threshold bi ∈ R, then the function will be expressed by the
formula fi(x|ai, bi) = Ki(ai, x)+bi. The equation fi(x|ai, bi) = Ki(ai, x)+bi = 0
defines a hyperplane which dichotomizes the hypothetical linear space X̃i and, as
a consequence, the feature scale Xi ⊆ X̃i along with the original set of objects:

fi

(

xi(ω)|ai, bi

)

= Ki

(

ai, xi(ω)
)

+ bi ≷ 0. (1)

The inequality (1) plays the role of a modality-specific kernel-based linear two-
class classifier in the set of real-world objects of arbitrary kind.



Before discussing methods of combining diverse modalities of objects rep-
resented in a training set with missing measurements, we consider in the next
Section the structure of a modality-specific classifier, and introduce the notion
of neutral points in the linear closure of the feature scale X̃i ⊇ Xi. This notion
will be the main mathematical instrument for filling blanks in the training set.

2.2 A single modality-specific kernel-based classifier inferred from

an incomplete training set

Let Ω∗={(ωj , yj), j =1, ..., N} be the training set of real-world objects allocated
by the trainer between two classes yj = y(ωj) = ±1. In the case of training
incompleteness, the partial set of training information for the subset of objects
Ω∗

i ⊂Ω∗, at which the ith modality i∈I is acquired xij =xi(ωj)∈Xi, will consist
of the matrix of available kernel values and class-indices:

Ω∗
i ⇒ {Ki(xij , xil), yj ; ωj , ωl ∈ Ω∗

i } . (2)

Perhaps the most widely adopted technique for finding a discriminant hy-
perplane (1) for a given training set of classified objects represented by a single
kernel is the Support Vector Machine (SVM) [11]. The idea underlying the clas-
sical SVM for linearly separable training sets is that of finding the discriminant
hyperplane which provides the maximum margin between the closest training
points of both classes:

{

Ki(ai, xij)+bi >εi, yj =1,
Ki(ai, xij)+bi 6−εi, yj =−1,

ωj ∈Ω∗
i , 2εi→ max

Ki(ai,ai)=1
(ai∈ X̃i, bi∈R). (3)

The attempt to maximize the overall margin between the classes 2εi → max
is what has given rise to the terminology ”Support Vector Machine”, because
the direction vector of the optimal discriminant hyperplane âi obtained as the
solution of the optimization problem (3) is completely determined (supported)
by the projections of a few number of objects into the modality-specific feature
space Xi ⊆ X̃i.

In the more realistic case of a linearly inseparable training set, the normalized
form of criterion (3) can be put as

{

Ki(ai, ai)+ Ci

∑

ωj∈Ω∗

i
δij → min(ai ∈ X̃i, bi ∈R, δij ∈ R),

yj

(

Ki(ai, xij) + bi

)

> 1 − δij , δij > 0, ωj ∈ Ω∗
i ,

(4)

where coefficient Ci > 0 penalizes the shifts δij of objects breaking the linear
separability of classes [11]. The dual form of this criterion is a quadratic pro-
gramming problem with respect to modality-specific Lagrange multipliers λij at
the inequality constraints:

{

∑

ωj∈Ω∗

i
λij − (1/2)

∑

ωj∈Ω∗

i

∑

ωl∈Ω∗

i
yjylKi(xij , xil)λijλil → max,

∑

ωj∈Ω∗

i
yjλij = 0, 0 6 λij 6 Ci/2, ωj ∈ Ω∗

i .
(5)

As the most essential result of training, the solution of the dual problem (λ̂ij >

0, ωj ∈ Ω∗
i ) picks out a subset of support objects within the modality-specific

training set (2):
Ω̂i ={ωj ∈Ω∗

i : λ̂ij >0}⊆Ω∗
i . (6)



The positive Lagrange multipliers at the support objects (λ̂ij > 0, ωj ∈ Ω̂i)
completely determine the values of the variables which optimize (4), first of all,
the direction vector and position of the hyperplane:

âi =
∑

ωj∈Ω̂i
yj λ̂ijxij ∈ X̃i, (7)

b̂i =

∑

ωj∈Ω∗

i
,0<λ̂ij<C/2 λ̂ijKi(âi, xij) + (C/2)

∑

ωj∈Ω∗

i
,λ̂ij=C/2 yj

∑

ωj∈Ω∗

i
,0<λ̂ij<C/2 λ̂ij

. (8)

As collateral solutions, the training problem (4) yields also the forced shifts

δ̂ij >0 of the training objects, but for our purpose there is no need to compute
these values.

The direction vector âi∈ X̃i of the modality-specific discriminant hyperplane
is expressed in (7) as the sum in terms of the hypothetical linear operations de-
fined in X̃i by the modality-specific kernel by virtue of the kernel trick. However,
there is no need to compute it explicitly. Substitution of the formal equality (7)
into (1) and (8) yields the family of recognition rules immediately applicable to
any new object ω∈Ω under the only condition that the ith modality xi(ω)∈Xi

is completely defined for it, i.e., kernel values Ki

(

xij , xi(ω)
)

are known for all
the objects of the training set:

f̂i(ω|Ω
∗
i , Ci, bi) =

∑

ωj∈Ω̂i

yj λ̂ijKi

(

xij , xi(ω)
)

+ b̂i ≷ 0,

b̂i =

∑

ωj∈Ω∗

i
,0<λ̂ij<C/2

λ̂ij

∑

ωk∈Ω∗

i
,λ̂ik>0

ykλ̂ikKi(xij , xik) + (C/2)
∑

ωj∈Ω∗

i
,λ̂ij=C/2

yj

∑

ωj∈Ω∗

i
,0<λ̂ij<C/2

λ̂ij

.
(9)

2.3 Neutral points in the modality-specific linear space of object

representation

Let the training set of object representations in terms of the ith modality Ω∗
i

(2) be fixed. Suppose the training problem in terms of the ith modality (4)-(5)

has been solved, namely, the Lagrange multipliers are known (λ̂ij , ωj ∈Ω∗
i ).

This solution determines the optimal discriminant hyperplane in the hypo-
thetical linear closure X̃i of the modality-specific feature scale Xi. Depending
on the sign of the decision function (9), the ith modality votes for assigning a
new object ω ∈Ω to the positive or negative class, but a firm decision will be
impossible if the object maps exactly to the discriminant hyperplane. For this
reason, we call the points of the discriminant hyperplane neutral points, using
the special symbols xφ,i ∈ X̃φ,i to denote them:

X̃φ,i =
{

xφ,i ∈ X̃i :
∑

ωj∈Ω̂i
yj λ̂ijKi

(

xij , xφ,i

)

+ b̂i = 0
}

⊂ X̃i. (10)

It is clear that X̃φ,i is a set of continuum cardinality. All the neutral points

xφ,i ∈ X̃φ,i possess the same property of ambiguous class membership (10), but,
in what follows, it will be convenient for us to distinguish one of them having
the minimum norm:

x̂φ,i = arg minxφ,i∈X̃φ,i
Ki(xφ,i, xφ,i). (11)



In terms of the linear operations in X̃i, this point is proportional to the
direction vector of the optimal discriminant hyperplane (7) x̂φ,i = ciâi =

ci

∑

ωj∈Ω̂i
yj λ̂ijxij . The coefficient ci ∈ R is given by the equation Ki(âi, ciâi)+

b̂i = ciKi(âi, âi) + b̂i = 0, whence it follows that ci = −b̂i/Ki(âi, âi), and, with
respect to (7),

x̂φ,i =
b̂i

∑

ωj∈Ω̂i

∑

ωk∈Ω̂i
yjykKi(xij , xik)λ̂ij λ̂ik

∑

ωj∈Ω̂i
yj λ̂ijxij ∈ X̃i. (12)

The neutral points (12) (or more exactly, the coefficients of their repre-
sentation as linear combinations of object features in the hypothetical linear
spaces X̃i), are additional results of training from the incomplete modality-
specific training sets (Ω∗

i , i ∈ I), that contain only those objects in the entire
training set Ω∗ for which the respective modality is defined. The central idea be-
hind harnessing such values for joint training with respect to all of the modalities
is using x̂φ,i instead of missed actual values of the respective modality-specific
features for incompletely represented objects. Such a strategy of replacing missed
feature values is then free of arbitrary assumptions regarding the nature of the
original natural data set.

3 Fusing pattern-recognition modalities at the training

stage for incomplete data

3.1 The principle of additive kernel fusion

We will call the union of all modality-specific training sets Ω∗ =
⋃

i∈I Ω∗
i (2)

over all the available modalities I = {1, . . . , n} the unified training set. We shall
say the unified training set Ω∗ is full if each object ωj ∈ Ω∗ is represented by
all modality-specific signals

(

xij = xi(ωj)∈Xi, i ∈ I
)

, i.e., all the kernel-specific
training sets coincide Ω∗

1 = ... = Ω∗
n.

A full training set Ω∗ allows for immediate combination of the various modal-
ities by kernel fusion. It is enough to define an appropriate combined ker-
nel (inner product) K(x′,x′′), x = (xi, i ∈ I) ∈ X̃, in the Cartesian product
X̃ = X̃1× ... × X̃n=|I| of the linear spaces X̃i ⊇ Xi defined by the respective
kernels. In particular, the sum of the initial kernels K(x′,x′′) =

∑

i∈I Ki(x
′
i, x

′′
i )

will be a kernel in X̃. From this point of view, any choice of a point a =
(ai ∈ X̃i, i ∈ I) ∈ X̃ and real number b ∈ R yields a discriminant hyperplane

f̂(ω|Ω∗)=K
(

a,x(ω)
)

+b=
∑

i∈I Ki

(

ai, xi(ω)
)

+b≷0 with direction vector a in

the Cartesian product X̃, and produces, thereby, a kernel fusion technique. How-
ever, just as in the case of a single kernel, there is no need to implicitly evaluate
the hypothetical direction vector which exists only in terms of the kernel trick.

The straightforward application of the SVM training principle (4)-(12) to
the Cartesian product of the particular linear spaces xj = (xij , i ∈ I) ∈ X̃ =

X̃1× ...× X̃n, ωj ∈Ω∗, results in the dual training problem, in which C >0 is the
penalty coefficient on the shifts of objects that break the linear separability of
the training set in X̃:



{

∑

ωj∈Ω∗ λj − (1/2)
∑

ωj∈Ω∗

∑

ωl∈Ω∗ yjyl

(

∑

i∈I Ki(xij , xil)
)

λjλl → max,
∑

ωj∈Ω∗ yjλj = 0, 0 6 λj 6 C/2, ωj ∈ Ω∗
i .

(13)

This quadratic programming problem over Lagrange multipliers (λj , ωj ∈ Ω∗)
has the same structure as that for a single modality (5). The only difference is
that the training set occurs in (13) through kernels K(xj ,xl) =

∑

i∈I Ki(xij , xil)

in the unified linear space X̃ instead of single modality-specific kernels Ki(xij , xil)

(5) in the particular spaces X̃i.
Let the training set be not full, i.e., such that each object ωj is, in general,

represented by only a fraction of the modalities xij ∈ Xi, i ∈ Ij ⊆ I. Then, there
are objects ωj not represented by certain of the modalities (xij , i /∈ Ij), and
the respective kernel values adjacent to these objects are unknown in the dual
criterion (13)

(

Ki(xij , xil) =?, i /∈ Ij , ωl ∈ Ω∗
)

.
The central idea for overcoming the problem of incomplete data at the train-

ing stage outlined in the next Section, is that of substituting the neutral values
x̂φ,i for the missing modalities xij .

3.2 Neutral point substitution for missing representations of

training objects

Let the SVM be applied within each modality-specific partial training set Ω∗
i

(Section 2.2). Then, the sets of support objects Ω̂i along with Lagrange mul-

tipliers (λ̂ij , ωj ∈ Ω∗
i ) and biases of discriminant hyperplanes b̂i are found for

all the modalities i ∈ I in accordance with (5), (6) and (12). As a result, the
hypothetical neutral points x̂φ,i ∈ X̃i are defined by (12) as linear combinations
of modality-specific object features.

Thus, it is possible to compute the neutral-point substitutes for missing val-
ues of kernels in (13):

Ki(xij , xil) ⇐ Ki(x̂φ,i, xil), i /∈ Ij , ωl ∈ Ω∗;

Ki(x̂φ,i, xil) =
b̂i

∑

ωk∈Ω∗

i
ykλ̂ikKi(xik, xil)

∑

ωk∈Ω̂i

∑

ωq∈Ω̂i
ykyqKi(xik, xiq)λ̂ikλ̂iq

.
(14)

The Lagrange multipliers (λj , ωj ∈Ω∗), found as a solution of the dual problem
(13) after such a substitution, determine, on the full application of the sequence

of computations (6)-(12), first, the set of support objects Ω̂={ωj ∈Ω∗ : λ̂j >0},

then the bias of the discriminant hyperplane b̂, and finally yield the decision rule

f̂(ω|Ω∗, C) =
∑

ωj∈Ω̂ yj λ̂j

∑

i∈I Ki

(

xij , xi(ω)
)

+ b̂ ≷ 0, (15)

which is the result of fusing the available pattern-recognition modalities taking
into account the final imbalance of the incomplete training set Ω∗.

4 Experiments: Biometric-based identity authentication

from incomplete data

To demonstrate the above principle experimentally, we employ the Biosecure
database [10], derived from a European project whose aim is to integrate multi-
disciplinary research efforts in biometric-based identity authentication.



We randomly chose a total of 333 different individuals from the database,
with distinct identities Z ={z=1, ..., 333}. Each of them is represented by four
time-spaced measurements vt

i(z) ∈ Vi, t = 0, 1, 2, 3, of eight modalities i ∈ I =
{1, ..., n}, n=8, where Vi is the scale for measuring the ith modality:

– two versions of the frontal face image (high- and low-resolution ones from,
respectively, professional and web camera), vt

i(z)∈Vi, i=1, 2,
– six fingerprints of the right hand (optical and thermal imprints of the index

finger, middle finger and thumb) vt
i(z)∈Vi, i=3, ..., 8.

The Cartesian product of all the modality-specific measurement scales will
be denoted as V = V1× ... × Vn. However, not all of potential measurements
{

vt
i(z), z ∈ Z, i ∈ I, t = 0, 1, 2, 3

}

are available in the data base. Approximately
one fourth of them have missing constituents, but for each of the chosen persons
z ∈ Z at least one of the measurement sets, let it be t = 0, is full, i.e., all the
modalities

(

v0
i (z), i∈ I

)

are properly represented in the data base, and neither

of the remaining sets
(

v1,2,3
i (z), i∈I

)

is completely missed.

In the experiments, we used this full set v
0(z) =

(

v0
i (z), i ∈ I

)

∈ V as the
personal template of person z∈Z, whereas the remaining three sets

v
1,2,3(z)=

(

v1,2,3
i (z), i∈ I

)

∈V, (16)

some of whose elements may be missing, served as his/her independent repre-
sentation in the experiments. Let symbols Vi(z) =

{

vt
i(z), t = 1, 2, 3

}

⊂ Vi and
Vi =

⋃

z∈Z Vi(z) ⊂ Vi stand, respectively, for the set of the representations of
person z in terms of the ith modality and the total set of such representations
of all the persons involved in the experiments.

Thus, we distinguish here between the people’s identities z∈Z and the three
times greater number of their multi-modal computer representations v

t(z) =
(vt

i(z), i∈I) ∈V =
⋃

z∈Z V (z)⊂V, V (z)=V1(z) × ... × Vn(z)⊂V, t=1, 2, 3.
To constitute the total set of real-world pattern-recognition objects ω ∈ Ω,

we choose the set of pairs

Ω =
{

ω=
(

v
t(z), z̃

)}

=V ×V×V×Z, (17)

where v
t(z)=(vt

i(z), i∈I) is one of the three received representations of a person
t=1, ..., 3, and z̃ is its claimed identity, which may be true or false. We shall say
that object ω=(v(z), z̃) belongs to the class of clients y=1 if the identity claim
is correct z = z̃, and to the class of impostors y=−1 in the case of a fraudulent
claim z 6= z̃.

For each modality i ∈ I, a real-valued similarity measure Si(v
′
i, v

′′
i ) : Vi ×

Vi →R is defined in the Biosecure database. It appears natural to measure the
credibility of the identity claim z̃ in the received pair ω=(v(z), z̃)=

(

(vi, i∈I), z
)

from the viewpoints of different modalities i ∈ I as the real-valued modality-
specific features xi(ω)=Si

(

vi(z), v0
i (z̃)

)

∈R. In this case, the natural modality-

specific kernel is dot product of feature values Ki(ω
′, ω′′) = Ki

(

xi(ω
′), xi(ω

′′)
)

=
Ki(x

′
i, x

′′
i )=x′

ix
′′
i .

We thus used information on 333 persons (person identities) Z =
{

z =

1, ..., 333
}

, each of which is represented by three independent sets of multi-modal



measurements v
1,2,3(z) in accordance with (16). All in all, we have 999× 333 =

332667 pairs of person representations and person identities ω=(v(z), z̃), which
is the size of the full set of objects |Ω|=332667 (17) in the experiments.

From the part of the full data set Ω, which contains only complete person
representations

(

vt
i(z), i ∈ I

)

, we chose the fixed test set consisting of 20962
objects, namely, pairs <complete person representation/claimed identity>. From
the rest of Ω, containing complete as well as incomplete person representations,
we further randomly chose 500 training sets each consisting of 200 pairs with
the correct claimed identity y =1 and 800 incorrectly claimed pairs y =−1. On
average, one fourth of 1000 objects in each of the random training sets were
incompletely represented, i.e., about 250 of them had at least one missing value
in the feature vector.

The goal of the experiment is to show that filling-in blanks in the multi-modal
training sets by the generalized neutral-point technique improves generalization
performance of the inferred recognition rule in comparison with other methods of
imputation. We compared the SVM-NPS technique outlined in this paper with
the following five SVM-based methods of treating blanks in the training data:
– SVM handling only objects represented by all the features, in our case,

about 3/4 of the training set (SVM-Full);
– sum-rule of combining single SVM-based modality-specific classifiers,

inferred each from the partial training subset containing only objects for which the
respective modality is known (SVM-SumRule);

– SVM handling all the objects with replacing the unknown features by their aver-
aged known values over the entire training set (SVM-OverallMean);

– the same with replacing the unknown features by their averaged known
values over the objects of the same class (SVM-ClassSpecificMean);

– the same with replacing the unknown features by their averaged known
values over 5 nearest neighboring objects in the feature space (SVM-5NN).

The interpretation of training results was based on computing the Equal
Error Rate of the direction vector of the discriminant hyperplane inferred by each
of the six techniques under comparison from each of the 500 random training
sets and applied to the test set. The EER value of the respective technique was
further averaged over all the training sets.

The following table summarizes the averaged EERs in percentages for the
imputation methods under comparison starting with our SVM-NPS:

SVM-NPS SVM-Full SVM-SumRule SVM- SVM- SVM-5NN
OverallMean ClassSpecificMean

1.07 1.93 1.93 1.38 1.92 1.85

As we can see, the SVM-NPS approach shows almost two times better perfor-
mance than the SVM-based learning from the training set consisting only of
objects with the complete set of features and the SVM-based sum-rule of com-
bining modality-specific classifiers. All other imputation methods are also far
outperformed.

5 Conclusions
In this paper, we have set out to generalize the previous neutral point method
for accommodating missing data within multi-modal kernel fusion problems in



order to accommodate arbitrary amounts of missing training (as opposed to
test) data. By using imbalance-sensitive SVM methods, we have shown that the
SVM-NPS approach to multi-modal pattern-recognition with incomplete data
displays exceptionally good generalization performance as compared to the sum
rule fusion of modality-specific classifiers, and to the known SVM-based methods
of missing-data imputation. Future experimental study will set out to determine
the full bounds of its practical applicability.
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