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Abstract

Splines are very popular in function interpolation
thanks to their robustness and fast computational al-
gorithms. In this talk, it is shown that splines are
closely related to the interpolation of stationary Gaus-
sian processes. This fact permits to predict the error
of spline interpolation and to compute it very fast. It
is shown also that splines are nearly optimal with re-
spect to the minimax interpolation of smooth Gaussian
processes and functions from Sobolev’s ball.

1. Introduction

In this paper we deal with recovering of an unknown
function f (x), x ∈ R based on the data Yk = f (Xk), k =
1, . . . ,n.

Among numerous interpolation methods, splines
are widely used in practice because they provide a very
good interpolation of smooth functions and admit a
simple physical interpretation. Apparently, the cubic
splines were firstly mentioned in [2].

The main goal in this paper is to show that splines
are closely related to the interpolation of stationary
Gaussian processes with the spectral density

Fα(ω) =
C

ω2m + α2m ;

where C, α are some positive constants and m≥ 1 is a
known integer.

Based on this analogy we propose a fast method for
computing the accuracy of spline interpolation. It will
be shown also splines are nearly optimal in the frame-
work of the minimax interpolation theory of functions
and processes from Sobolev’s ball.

2. Interpolation of stationary Gaussian
process

It is well known (see e. g. [4, 5, 8]) that the best
interpolation of the Gaussian process with the spectral
density Fα(ω) is given by

f̄ (x,Y ) =
n

∑
k=1

Kα(x,Xk)Yk,

where Kα(x,Xk) satisfies the Wiener-Hopf equation

E
[

f (x)−
n

∑
k=1

Kα(x,Xk) f (Xk)

]
f (Xs) = 0, s = 1, . . . ,n. (1)

The interpolation error is computed as follows

σ
2
α(x)

def
= E

[
f (x)−

n

∑
k=1

Kα(x,Xk) f (Xk)

]2

=E
[

f (x)−
n

∑
k=1

Kα(x,Xk) f (Xk)

]
f (x).

In practice, the parameters α and C are usually
unknown and to make use of (1) one has to estimate
them. Usually this is done with the help of the max-
imum likelihood method. Unfortunately, such an ap-
proach complicates greatly the solution to the problem
of interpolation. A more robust approach would be to
find a solution (1) as α → 0. However, the implemen-
tation of this idea is not obvious because

lim
α→0

C
ω2m + α2m =

C
ω2m

and therefore ∫
∞

−∞

1
ω2m dω = ∞.

This means that the random process with the spectral
density Cω−2m doesn’t exist. Nevertheless, it can be
shown that the following limits

lim
α→0

Kα(x,X) = K0(x,X),

lim
α→0

σ
2
α(x) = σ

2
0 (x)

do exist. More precisely, it holds

Theorem 1 Let all Xk, k = 1,2, . . . ,n are distinct and

n≥ m. Define functions d(m)
s [x] as follows:

d(1)
s [x] =

|Xs+1− x|2m−1−|Xs− x|2m−1

Xs+1−Xs
,

d( j+1)
s [x] =

d( j)
s+1[x]−d( j)

s [x]

Xs+ j+1−Xs
,

(2)



where s = 1, . . . ,n−m. Then

lim
α→0

Kα(x,Xk) = K0(x,Xk), k = 1, . . . ,n,

where K0(x,Xk) is a solution to

n

∑
k=1

K0(x,Xk)d(m)
s [Xk] = d(m)

s [x], s = 1, . . . ,n−m, (3)

n

∑
k=1

K0(x,Xk)X p
k = xp, p = 0, . . . ,m−1. (4)

For the interpolation error we have

lim
α→0

σ
2
α(x) = (−1)m+1C

n

∑
k=1

K0(x,Xk)|x−Xk|2m−1.

3. Fast algorithm

From a numerical viewpoint, Equation (3) is not
good because its matrix is dense. In this section we
show how to transform this equation into a band form
and thus to construct a fast algorithm for solving (3).

It follows immediately from (2) and (3) that for
j = m + 1, . . . ,2m the following equations hold

n

∑
k=1

K0(x,Xk)d( j)
s [Xk] = d( j)

s [x], s = 1, . . . ,n− j. (5)

It is also easily seen that

d( j)
s [x] = P(2m− j−1)

s [x], x≥ Xs+ j,

d( j)
s [x] =−P(2m− j−1)

s [x], x≤ Xs.

where P(2m− j−1)
s [x] is the polynomial of order 2m− j−1

defined by

P(2m− j−1)
s [x] =

2m− j−1

∑
q=0

(−1) j+qC j+q
2m−1x2m− j−q−1

× ∑
l0+···+l j=q

X l0
s ×·· ·×X

l j
s+ j.

So, P(0)
s [x] =−1 and therefore

d(2m)
s [x] = 0, x 6∈ [Xs,Xs+2m].

Thus with Equations (5) can be rewritten in the follow-
ing equivalent form

s+2m−1

∑
k=s+1

K0(x,Xk)d(2m)
s [Xk] = d(2m)

s [x], (6)

where s = 1, . . . ,n−2m.
To obtain the remainder 2m equations we combine

(5) and (4). Thus we arrive at

q−1

∑
k=1

K0(x,Xk)

[
d(q)

q [Xk]−P(2m−1−q)
q [Xk]

]
= d(q)

q [x]−P(2m−1−q)
q [x], q = m, . . . ,2m−1

(7)

and
n

∑
k=n−q+1

K0(x,Xk)

[
d(q)

n−q[Xk]+ P(2m−1−q)
n−q [Xk]

]
= d(q)

n−q[x]+ P(2m−1−q)
n−q [x], q = 2m−1, . . . ,m.

(8)

It is clear that the matrix of the linear system (7 -
8) has (2m−1) - band form. Notice that in case m = 2
the traditional method of solving tridiagonal systems is
the Thomas algorithm [1]. When m > 2 the Cholesky
decomposition [3] may be used to find a solution to (7
- 8).

4. Splines and Gaussian processes

In this section, we consider a slightly more general
smoothing problem assuming that we have at our dis-
posal the noisy data

Yj = fα(X j)+ ε j, j = 1, . . . ,n,

where ε j is a white Gaussian noise with Eε2
j = σ2 > 0

and fα(·) is a Gaussian process with the spectral density
Fα(·). Our goal is to estimate f (x). Let f̄α(x,Y ) be
the best smoothing. The following theorem shows that
limα→0 f̄α(x,Y ) is a smoothing spline.

Theorem 2 Let all X j, j = 1,2, . . . ,n are distinct and
n≥ m. Then

lim
α→0

f̄ α(x,Y ) = f̄ (x,Y ),

where

f̄ (x,Y ) = argmin
f

{
1

2σ2

n

∑
k=1

[
Yj− f (X j)

]2
+

(2π)2m

2C

∫ 1

0

[
f (m)(t)

]2 dt
}
.

5. Minimax interpolation of stationary
Gaussian processes

Suppose f (·) is a stationary Gaussian process with
a known spectral density F(ω). Assume also that

Xk = kh, k = 0,±1,±2, . . . .

Our goal is to recover the trajectory f (x) on the interval
[0,h] based on the data Yk = f (Xk), k = 0,±1,±2, . . ..
Since the process is Gaussian and stationary it may be
easily shown that the best estimate has the following
form:

f̄ (x,Y,K) = h
∞

∑
k=−∞

K(x−Xk)Yk,

where K(·) is a symmetric kernel minimizing the inter-
polation error

σ
2(K) =

1
h

∫ h

0
E[ f (x)− f̄ (x,Y,K)]2 dx.



Assume that the process f (x) is smooth i.e.

E[ f (m)(x)]2 ≤ L. (9)

Denote by F (m,L) the class of all stationary processes
for which Condition (9) holds.

Our goal in this section is to compute the minimax
interpolation error defined by

rh(m,L) = inf
f̄

sup
f∈F (m,L)

1
h

∫ h

0
E[ f (x)− f̄ (x,Y )]2 dx.

Theorem 3

rh(m,L) =
L
2

(
h
π

)2m

.

Minimax interpolation is given by

f̄◦(x,Y ) = h
∞

∑
k=−∞

K◦(x−Xk)Yk,

where

K̂◦(ω) =


1, ω ∈ [0,ω◦],
2m−1(1−ω)m, ω ∈ [ω◦,1/2],
1−2m−1ωm, ω[1/2,1−ω◦],
0, ω ≥ 1−ω◦.

and ω◦ = 1−2−1+ 1
m .

In order to understand how splines can interpolate
random processes from F (m,L), define the risk of the
spline interpolation by

rspline
h (m,L) = sup

f∈F m(L)

1
h

∫ h

0
E[ f (x)− f̄ (x,Y )]2dx,

where f̄ (x,Y ) is defined by (2).

Theorem 4

rspline
h (m,L) = L

(
h

2π

)2m

max
ω

{
1

ω2m

[
[1− K̂s(ω)]2+

+ ∑
k 6=0

K̂2
s
(
ω + k

)]}
,

where

K̂s(ω) =

[
1 + ∑

k 6=0

(
1 +

k
ω

)−2m]−1

.

Unfortunately, analytic computing of the right-
hand side at (4) is rather cumbersome and difficult.
Therefore we compute it numerically and trace the min-
imax spline efficiency rspline

h (m,L)/rh(m,L). From Figure
1 we see that the risk of spline interpolation is rather
close to the minimax risk. Notice that the minimax
efficiency of the cubic spline (m = 2) is approximately
1.35.
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Figure 1. Minimax spline efficiency
rspline

h (m,L)/rh(m,L) for different m.

6. Accuracy evaluation for splines

Usually, in practical applications, along with the in-
terpolation method, one is interested in controlling the
accuracy of the interpolation in use. In this section we
propose a simple estimate for the spline interpolation
accuracy.

Denote by f̄ m(x,X ,Y ) and f̄ m+1(x,X ,Y ) splines of
orders m and m+1 respectively. To estimate from above
the spline accuracy

σ
2(x,X ,Y ) = [ f (x)− f̄ m(x,X ,Y )]2,

we propose to make use of the following estimate:

σ̄
2(x,X ,Y ) = [ f̄ m+1(x,X ,Y )− f̄ m(x,X ,Y )]2.

In order to justify this method, we test it on station-
ary random processes. Assume that X = {Xk = kh, k =
0,±1,±2, . . .} and Yk = f (Xk). The following theorem
shows that σ2(x,X ,Y ) may be controlled by σ̄2(x,X ,Y ).

Theorem 5 Suppose f (x) is a stationary process with
the spectral density

F(ω) =
φ(|ω|)
|ω|2m ,

where φ(ω), ω > 0 is a non-negative and non-increasing
function. Then there exists a constant Q such, that∫ Xk+1

Xk

Eσ
2(x,X ,Y )dx≤ Q

∫ Xk+1

Xk

Eσ̄
2(x,X ,Y )dx, (10)

The constant Q in (10) tends to 1 when the smooth-
ness of the underlying process increases. The next re-
sult justifies this assertion.



Theorem 6 Suppose the spectral density of the random
process f has the following form:

F(ω) = φ(ω)exp(−µω
2),

where φ(·) fulfills Aφ◦(|ω|)≤ φ(ω)≤ Bφ◦(|ω|) for some
non-negative and non-increasing function φ◦(·). Then∫ xk+1

xk

Eσ
2(x,X ,Y )dx≤ Q(µ)

∫ xk+1

xk

Eσ̄
2(x,X ,Y )dx

and
lim

µ→∞
Q(µ) = 1.

7. Interpolation of smooth functions

Let us now turn to the interpolation of determinis-
tic functions from the Sobolev’s ball

W m
T (L) =

{
f :

∫
∞

−∞

[ f (m)(x)]2 dx≤ LT,

supp{ f} ∈ [0,T ]

}
.

In what follows it is assumed that the design points
Xk are located on the equidistant grid with the step h> 0

Xζ

k = kh + ζ , k = 0±1, . . . ,

where ζ is a random variable uniformly distributed on
[0,h].

Our goal is to recover f (x), x ∈ [0,T ] based on the

data Y ζ

k = f (Xζ

k ). Define the minimax risk

ρh(m,L) = lim
T→∞

inf
f̃

sup
f∈W m

T (L)

Eζ

1
T

∫ T

0
[ f (x)− f̃ (x,Y ζ )]2 dx,

where Eζ is averaging with respect to ζ .
The next result shows that the minimax interpola-

tions of functions and Gaussian random processes are
very close provided that the design points belong to the
randomly positioned equidistant grid.

Theorem 7 The following equality holds

ρh(m,L) =
L
2

(
h
π

)2m

.

The proof of this theorem is based on the method pro-
posed by M. Pinsker in [7].

8. Numerical experiment

In this section we compare numerically the cubic
spline interpolation with the kriging (package DACE
[6]). The following test functions were used for this
comparison:

1. Discontinuous function

f (x) =
[
1
{

0.25≤ x≤ 0.75
}

+ 0.25
]

cos(3πx).

2. Smooth function

f (x) = exp
(
−270|3x−1.8|3

)
+exp

(
−350|3x−1.3|3

)
.

3. Oscillating function with increasing frequency

f (x) = cos
[
2π(0.2x + 7x2 + 1)

]
.

To compare the quality of the interpolation and
the accuracy evaluation, we begin with computing in-
terpolations for the cubic spline and the kriging us-
ing the data Yk = f (Xk), Xk = k/n, k = 0, . . . ,n for a
given function f . Next we calculate the actual inter-
polation error and the predicted error on a very fine
grid x j = j/N, 1, . . . ,N, N� n. Denote these errors by

Espline
actual(x, f ),Espline

pred (x, f ) and Ekriging
actual (x, f ),Ekriging

pred (x, f ).
We estimate the quality of the interpolation

method by means of the mixture of the actual and pre-
dicted errors, i.e.

Espline
p (x, f ) = pEspline

pred (x, f )+(1− p)Espline
actual(x, f ),

Ekriging
p (x, f ) = pEkriging

pred (x, f )+(1− p)Ekriging
actual (x, f )

where p ∈ [0,1]. Finally, we compare the interpolation
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Figure 2. The empirical distribution function of the
combined errors in case of the discontinuous function

methods by tracing the empirical distribution functions
of the mixture errors Espline

p (x, f ) and Ekriging
p (x, f ) i.e.

Fkriging
p (z, f ) =

1
N

N

∑
i=1

1
{

Ekriging
p (x, f )≤ z

}
,

Fspline
p (z, f ) =

1
N

N

∑
i=1

1
{

Espline
p (x, f )≤ z

}
.

On Figures 2-4 the empirical distribution functions are
presented for p = 0.5. Notice that the larger empirical
distribution function means the smaller combination of
actual and predicted interpolation errors.
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Figure 3. The empirical distribution function of the
combined errors in the case of the smooth function

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X

E

p=0.5

 

 

spline

kriging

Figure 4. The empirical distribution function of the
combined errors in case of the oscillating function.

9. Conclusion

Using the fact that splines may be viewed as lim-
its of interpolations related to stationary Gaussian pro-
cesses, we propose a very simple and fast method for
controlling the accuracy of spline interpolation. It is
proved also that splines are nearly optimal with respect
to the minimax interpolation theory for smooth pro-
cesses and functions. Our numerical experiment shows
that the proposed accuracy evaluation for splines may
be more effective compared with the kriging.
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