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In this paper manifold embedding and reconstruction procedures are considered in the scope of unsupervised
dimension reduction problem. Standard approaches (Isomap, LLE, LTSA, etc.) are compared to newly proposed
Grassman-Stiefel Eigenmaps (GSE) algorithm. It turned out that GSE provides best manifold reconstruction
abilities on test problems.
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Â äàííîé ñòàòüå ðàññìîòðåíû ðàçëè÷íûå ïîäõîäû ê ïîñòðîåíèþ âëîæåíèé è âîññòàíîâëåíèé ìíîãîîáðà-
çèé â çàäà÷àõ ñíèæåíèÿ ðàçìåðíîñòè áåç ó÷èòåëÿ. Ïðîâåäåíî ñðàâíåíèå ñòàíäàðòíûõ ïîäõîäîâ (Isomap,
LLE, LTSA è äð.) ñ íîâûì ìåòîäîì íà îñíîâå ñïåêòðàëüíîãî âëîæåíèÿ Ãðàññìàííà-Øòèôåëÿ (GSE). Â
ïðîâåäåííûõ ýêñïåðèìåíòàõ GSE ïîêàçàë íàèëó÷øåå êà÷åñòâî âîññòàíîâëåíèÿ ìíîãîîáðàçèé.

Tremendous amounts of data are becoming usual
for modern data analysis. This refers not only to the
rapidly growing sample sizes but also and sometimes
only to the dimensionality of the data. Modern data
analysis techniques generally have difficulties in han-
dling high-dimensional data. It is a challenge for data
analysis because of the inherent sparsity of the data
in high dimensions.

A first step toward addressing this challenge is
the use of dimension reduction techniques. There are
lots of them offered by the modern analysis (see e.g.
[8, 4, 6, 7, 9]). But newly arising problems bring spe-
cific demands on algorithms’ abilities. One of them is
not only to obtain the lower-dimensional representa-
tion of the data but also to be able to handle new
(the so called out-of-sample) points and reconstruct
initial representation from reduced-dimensional. This
may be helpful in problems like generation of similar
objects or optimization in lower dimensional space. In
the present paper several approaches to unsupervised
dimension reduction problem are compared on bench-
mark test problems. Both manifold embedding and
reconstruction are examined.

Dimensionality Reduction

Let XN = {xi ∈ Rp}Ni=1 be the given set of points.
The main purpose of a dimensionality reduction proce-
dure is to find some lower-dimensional representation
of the data at hand, YN = {yi ∈ Rd}Ni=1, d < p, to
discover underlying properties or improve abilities of
other data mining techniques which use the data XN .
Dimension reduction can be done in several ways. In
this paper we consider such dimension reduction algo-
rithms that preserve local topology of the dataset.
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Manifolds. Consider the curve shown in figure 1.
Note that the curve is in R3, yet it has zero volume,
and in fact zero area. The extrinsic dimensionality –
three – is somewhat misleading since the curve can
be parameterized by a single variable. One way of for-

Fig. 1. An example of manifold

malizing this intuition is via the idea of a manifold:
the curve is a one-dimensional manifold because it lo-
cally “looks like” a copy of R1. Let us quickly review
some basic terminology from geometry and topology
in order to crystallize this notion of dimensionality.

Definition 1. A homeomorphism is a continuous
function whose inverse is also a continuous function.

Definition 2. A p-dimensional manifold M is a set
that is locally homeomorphic with Rd. That is, for
each x ∈ M, there is an open neighborhood around
x, Nx, and a homeomorphism f : Nx → Rd. These
neighborhoods are referred to as coordinate patches,
and the map is referred to as a coordinate chart. The
image of the coordinate charts is referred to as the
parameter space.
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The above definition is extremely general. We will
be interested only in the case where M is a sub-
set of Rp, where p is typically much larger than
d. In other words, the manifold will lie in a high-
dimensional space Rp, but will be homeomorphic to
a low-dimensional space Rd, with d < p.

Additionally, all the algorithms we study in this
paper have some smoothness requirements that fur-
ther constrain the class of manifolds considered.

Definition 3. A smooth (or differentiable) manifold
is a manifold such that each coordinate chart is differ-
entiable with a differentiable inverse (i.e., each coor-
dinate chart is a diffeomorphism).

Generally the algorithms in this area are aimed to
construct a mapping between train set and its reduced
representation. However, some real problems require
more information about the embedding.

Manifold Learning. An algorithm may learn an
internal model of the data, which can be used to map
points, unavailable at training time, into the embed-
ding using a process often called out-of-sample exten-
sion. Throughout the paper we consider the following
data generation model. Let Y ⊂ Rd be the hidden pa-
rameter space and X ⊂ Rp – the data space and the
embedding (one-to-one injection)

f : Y → X ,

that somehow preserves topological properties of
points (e.g. the distances along the manifold).

The task is to construct an embedding h(x) and
reconstruction g(y) = h−1(y), where x ∈ X and y ∈
Y, given a set of points XN = {xi ∈ Rp}Ni=1.

The reduced-dimensional space is not unique and
not obliged to coincide with the real parameter space
Y. Suppose that we found some embedding and re-
construction functions h and g. Consider an invertible
function s : Rd → Rd and a new parametrization y∗ =
= s(h(x)) for any x ∈ X and x∗ = g(s−1(y∗)), where
y∗ ∈ Rd. So, the only way to evaluate quality of a
method is to calculate the reconstruction error on the
independent test set (cf. with the original train set) of
points from the same manifold.

Problem Statement. Given a set XN = {xi ∈
Rp}Ni=1 and a value of reduced-dimensional representa-

tion d, find an embedding ĥ : Rp → Rd that preserves
local structure of the set and a reconstruction function
ĝ : Rd → Rp such that x̂i = ĝ(ĥ(xi)) is close to xi.

Dimension Reduction Techniques

Isomap. Isomap [8] is a combination of the Floyd-
Warshall algorithm for finding shortest paths in a
weighted graph with classic Multidimensional Scal-
ing. Classic Multidimensional Scaling (MDS) takes
a matrix of pair-wise distances between all points,
and estimates a position for each point. So, Isomap

initially calculates pair-wise distances only between
neighboring points. And then Floyd-Warshall algo-
rithm is employed to compute pair-wise distances
between all points. This effectively estimates the
full matrix of pair-wise geodesic distances between
points. Isomap then uses classic MDS to compute the
reduced-dimensional positions of all points.

Landmark-Isomap is a variant of this algorithm
that uses landmarks to increase speed, at the cost of
some accuracy.

Linear Embedding. Locally-Linear Embedding
(LLE) [6] was developed at approximately the same
time as Isomap. It has several advantages over Isomap,
including faster optimization due to advantage of
sparse matrix algorithms, and better results for many
problems. LLE begins by finding a set of the near-
est neighbors of each point. It then computes a set of
weights for each point that best describe the point as
a linear combination of its neighbors. Finally, the al-
gorithm uses an eigenvector-based optimization tech-
nique to find the low-dimensional embedding of points,
such that each point is still described with the same
linear combination of its neighbors. LLE tends to han-
dle non-uniform sample densities poorly.

Out-of-sample extension and manifold reconstruc-
tion for LLE are presented in [1] and [3] correspond-
ingly.

Several improvements of the algorithm are pro-
posed in literature. Some of them are described below.

Hessian LLE. Like LLE, Hessian LLE [4] also
uses nearest neighbors for determining local geometry.
But in contrast to original LLE it estimates Hessians,
Hf (x), of the embedding and calculates injection min-
imizing average Hessian norm∫ ∥∥∥Hf (x)

∥∥∥2
F

dx.

LLE tends to yield results of a much higher quality
than LLE. Unfortunately, it has a very costly compu-
tational complexity, so it is not well-suited for heavily-
sampled manifolds.

Conformal Eigenmaps. Conformal Eigenmaps
[7] are based on the observation that local nonlin-
ear techniques for dimensionality reduction (which
computationally are usually reduced to calculation of
eigenvectors corresponding to the highest eigenvalues
for some matrix) do not employ information on the
geometry of the data manifold that is contained in
discarded eigenvectors that correspond to relatively
small eigenvalues. So, Conformal Eigenmaps initially
perform LLE (or alternatively, another local nonlin-
ear technique for dimensionality reduction) to reduce
the high-dimensional data to a dataset of dimensional-
ity dt , where d < dt < p. Then Conformal Eigenmaps
use the resulting intermediate solution in order to con-
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struct a d-dimensional embedding that is maximally
angle-preserving (i.e., conformal).

Local Tangent Space Alignment. LTSA [9] is
based on the intuition that when a manifold is cor-
rectly unfolded, all of the tangent hyperplanes to the
manifold will become aligned. It begins by computing
the k-nearest neighbors of every point. Then it com-
putes the tangent space at every point by computing
first d principal components in each local neighbor-
hood. Finally, LTSA algorithm finds an embedding
that aligns the tangent spaces.

The manifold reconstruction procedure for LTSA
is also described in the original paper.

Grassman-Stiefel Eigenmaps
Recently proposed local algorithm GSE [2] unlike

other similar algorithms does not utilize the concept of
nearest neighbors while using points’ neighborhoods.
This implies that the manifold should be contained
in an ε-tube and enough points should lie in the ε-
neighborhood for each data point. Before the actual
description of the algorithm we have some definitions
to start with.

Definition 4. The (compact) Stiefel manifold Sn,p is
the set of all p-tuples (x1, . . . , xp) of orthonormal vec-
tors in Rn, i.e.

Sn,p = {X ∈ Rn×p : XTX = Ip}.

Definition 5. A Grassmannian (Grassmann manifold)
is a space G(d, V ) which parameterizes all linear sub-
spaces of a vector space V of a given dimension d. The
Grassmanians are compact, topological manifolds.

The embedding procedure consists of the following
steps:
Preprocessing. For each xi ∈ XN

1. Build a set Uε(xi) = {x′ ∈ XN : ‖xi − x′‖ < ε}
and

kε,τ (xi, x′) =

{
e−τ‖xi−x′‖2 , if x′ ∈ Uε(xi),

0, otherwise,

where ε > 0 and τ > 0 are parameters.
2. Apply Principal Component Analysis for the set

Uε(xi) in order to determine d eigenvectors of the
sample correlation matrix, corresponding to the
largest eigenvalues Q(xi) = [q1(xi), . . . , qd(xi)] –
compact Stiefel manifold.

3. Denote the intersection of the tanget spaces for xi
and x′ by S(xi, x′) = QT (xi)Q(x′),

Uη(xi) = {x′ ∈ Uε(xi) :
√

1− |S(xi, x′)|2 < η}

and

k(xi, x′) = kε,τ,η(xi, x′) =

=

{
kε,τ (xi, x′)|S(xi, x′)|2, if x′ ∈ Uη(xi),

0, otherwise,

where η > 0 is a parameter.

Tangent spaces alignment. Let Grassmaniann
H(xi) = Q(xi)V (xi) be an approximation for embed-
ding Jacobean and span{H(xi)} = span{Q(xi)}. Find
such V (xi), i = 1, . . . , N that

1

2

N∑
i=1

N∑
j=1

k(xi, xj)‖H(xi)−H(xj)‖2F → min
Vi,i=1,...,N

,

where ‖ · ‖F – Frobenius norm. This minimization
could be reduced to eigenvalues problem for explic-
itly written matrix.
Embedding construction. Solve the system of lin-
ear equations to construct the embedding:

k(xj , xi)(xj − xi) = k(xj , xi)H(xi)(yj − yi),
i, j = 1, . . . , N.

Out-of-sample embedding is based on the multidi-
mensional nonparametric regression with kernels con-
structed in the same way as in preprocessing step of
training set embedding.

The manifold reconstruction is based on the mul-
tidimensional nonparametric regression with kernels
constructed in a way that k(y′, y′′) ≈ k(g(y′),g(y′′))
to preserve local geometrical structure.

Embedding and Reconstruction
Some methods (e.g., LLE and LTSA) have explicit

solutions, described in literature, for out-of-sample
embedding and manifold reconstruction while others
were not intended to solve the out-of-sample exten-
sion and/or reconstruction problems at all. A general
workaround was applied for those manifold learning
methods that do not have any explicit out-of-sample
extension and/or reconstruction procedures, described
in the literature.

In order to perform the out-of-sample extension for
a new point x (see the full description in [5]):

1. Find the closest point x′ ∈ XN to x.
2. Calculate the local embedding matrix:

L = (x′ − x′)+(y′ − y′),

where x′ is the mean vector over nearest neighbors
of x′, y′ is the mean vector over nearest neighbors
of y′ and (·)+ represents the matrix pseudoinverse.

3. Calculate the reduced-dimensional representation
as

y = y′+ (x− x′)L

for out-of-sample point x.

The same idea is used for reconstruction.

Numerical Experiments
In numerical experiments algorithms’ embedding

and manifold reconstruction abilities were tested on
artificial datasets, such as 1d spiral in 3d space and
Swissroll manifold.
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All approaches appeared to be rather efficient in
embeddings (provided sufficient sample size is given).
While manifold reconstruction became a challenging
task for most of the algorithms. A representative re-
sults on Swissroll manifold (see figure 3) are presented
on figure 2 for different sample sizes. In all the exper-
iments GSE outperforms other approaches in recon-
structing initial manifold (thus preserving local struc-
tural features).

Fig. 2. Reconstruction error for different train sample
sizes (Swissroll test case)

Discussion
The newly proposed algorithm, Grassmann-Stiefel

Eigenmaps, proved to solve typical unsupervised di-
mension reduction problems. It also has good manifold
reconstruction ability compared to other approaches
which allows to solve more general class of problems
and to broaden area of GSE algorithm application to
supervised dimension reduction (feature extraction),
target function optimization and several other data
mining problems.

Further research should be aimed on

— automatic estimation of GSE parameters;
— algorithmic optimization to speed up the compu-

tations;
— studying the possibility of usage of GSE in other

areas of data mining.
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