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ABSTRACT

We consider conceptual design problem of a family of aitsraf different capacities yet having maximum
number of elements in common to reduce maintenance andtmpedacosts. Each family member has its own
operational requirements and cost criteria, which makesfamily selection a multi-criteria equality constrained
optimization problem. The conceptual design task supphteaewith semi-empirical models for geometry, aerody-
namics, weights and performances is successfully solvied) BACROS software developed by DATADVANCE.
We managed to greatly improve considered performance mesaand quantitatively describe the whole variety of
optimal non-dominated solutions.

1 Introduction

Conceptual Design is the very first step of aircraft desigijgat during which the general arrangement of the aircgaft i
defined, selecting the overall positions and shapes of wariomponents, as well as the most suitable technologiesseTh
choices are crucial for the project progress and its pralitalvhile wide range of uncertainty is attached to most loé t
assumptions and evaluation processes. The economicdltyiaba given project of a new airplane is even more diffictal
assess as it has to be put in the perspective of the compdgtidscape.

Actually, in order to make the largest feedback on R&D inmrestt and to maximize the product attractiveness it is usual
to consider the production of a family of aircrafts of diffat capacities rather than an aircraft alone. With hightyilsir
products, this allows covering a more important market {henh a single aircraft. All the members of this family of aafts
have different fuselage lengths and characteristic weight they have in common a maximum number of elements which
may reduce drastically airliners maintenance and operalticosts.

Generally, there is a central configuration from which aketa
the other members of the family. These are usually realidéihg or
removing fuselage sections, adapting engine rating thiarsthang-

® - Competitors
ing engines and optimizing structural reinforcements ofnaitéd - o
number of components. This will result in airplanes withfefiént s Short s
nominal ranges and characteristic weights. To give an elgfjg. 1 g 31270% T\lal\)/l( [ ] V
shows the market place covered by a family of three aircrafts %) Central o
important to notice that each aircraft in this type of graghifacing 8 200 Pax Long
existing, or projected, competitor airplanes. 3000 NM 230 Pax
Being inside slightly different market segments, each nmerob 2700 NM
the family has its own operational requirements but alsovits cost
criteria which makes the family optimization a basic mutiteria Cost/NM

problem. Some of the design parameters (as the wing desigmpa  Figure 1. Market place covered by 3-aircraft family (NM’
eters) are common to all members of the family but some off@srs  appreviation stands for Nautical Miles).

the engine maximum thrust) are specific to each member. Due to

coupling through family parameters, any design paraméietily or

member specific) can be sized by any member specific cortstralio complicate a little bit the picture, it is usual to put
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in concurrence several criteria such as Cash Operating(C@t), Maximum Take Off Weight (MTOW) and Mission Fuel
(FUEL) in order to assess some robustness of the optimum.

Due to business strategic considerations, aircraft faoplymization requires that several possible solutionsxtibited
in order to let freedom to decision making. The Pareto Frothé criteria space and its associated Pareto Set in thenptaa
space' is probably one of the most relevant mathematical tool tauragmost of possible compromises.

The following study illustrates this approach. AIRBUS iattise simulation toolbox was used to evaluate design Giteri
and constraints. The toolbox is based on semi-empiricaletsazbvering all main physics that are interacting at conp
design phase: geometry, aerodynamics, weights and pexfa@s. Implemented processes are classical and perfonched i
pendently for each member of the family of three aircrafteSdprocesses are coupled only through input design paemet
and member specific constraints. MACROS Generic Tool forir@ipation [DATADVANCE, 2013] was used to perform
multi-objective optimization.

In section 2 we describe the formulation of the multi-okjecbptimization problem. Section 3 describes the detdils o
MACROS multi-objective optimization algorithm. In seatid we present results of optimization of family of aircrafts

2 Problem Formulation

In the considered multi-objective optimization problenside variables are naturally structured: there are thriferdnt
aircraft families “CENTRAL”, “LONG” and “SHORT", each of wich is characterized by three specific parameters: “MTOW"
(Maximum TakeOff Weight), “MZFW” (Maximum Zero Fuel Weighgnd “SLST” (See Level Specific Thrust). However,
apparent symmetry of design types is broken for CENTRAL giesit additionally possesses “AR” (wing Aspect Ratio),
“AREA’ (wing area) and “BPR” (engine ByPass Ratio) designiahles, which provide the interconnection between déifer
families: in their absence the problem would break up inte¢hindependent models for each design type. In the sequel
we abbreviate the names of all design parameters, for iostdSHORT/MTOW” stands for SHORT design type MTOW
variable. Each design variable is naturally bounded, theza priori known attainable minimal/maximal values.

Reference design point, also used as a starting point famattion, corresponds to one of the currently consideted a
AIRBUS family of future aircrafts.

The problem is characterized by nine performance criteigettive functions) to be minimized and they follow the
same symmetry pattern. For each design type we consider plerformance measures: “COC” (operational cost), “FUEL"
(fuel consumption) and “MTOW” (maximum takeoff weight)Problem is subjected to 33 non-linear constraints. Rdatic
symmetry is also clearly visible among the imposed conssaieach design type possesses its own set 9 inequalitie? an
normalized to zero equalities.

As far as technical details are concerned, the problem isutated in a black box fashion, optimization algorithmsldou
only access the values of performances/constraints areliff designs. In turn, the modelling is performed withirleic
scientific modelling environment [Scilab, 2013], whichdracts with optimization software via input/output texgsil

To summarize: the problem design space is not large (N=1@)thie prime difficulty is to consider many performance
measures (K=9) simultaneously. We stress that such lamgdauof objective functions is notoriously difficult to hded
we're not aware of any efficient optimization algorithm chigeto deal with such cases. Moreover, imposed set of cantstra
(M=33 in total, six of which are equalities) utterly comglies the model and it becomes a real challenge to solve it.

3 Solution Methodology

This section succinctly describes optimization algoritwhich were used to solve given problems. Consideration is
indeed very brief, in a nutshell only, simply because it gtasbeyond the scope of this paper to treat all subtleties of
concrete algorithm implementation. Instead our primal gogive a feeling of underlying ideas leaving aside all t@chlities
involved. We're in haste to add, however, that utilized alipons are not experimental and are in production stagecizersi
years already as a part of MACROS Generic Tool for Optimaa(GTOpt) developed by DATADVANCE. Moreover, GTOpt
itself is only one of many other Generic Tools available in ®R0OS and its front end named Problem Solving Environment
(PSE), please refer to [DATADVANCE, 2013] for details andther references.

In sections 3.1 and 3.2 we describe a few algorithms aimedstwmder nearest to current iterate (locally) Pareto ogtima
solutions. Then in Sec. 3.3 we discuss Pareto frontier lgeametry, knowledge of which allows us to spread from alyead
known optimal designs towards nearby other optimal sahstioSections 3.4 and 3.5 provide summary of multi-objective
optimization approach used in GTOpt, prime advantage o€t the ability to always stay close to optimal set. Notd tha
this is not the only multi-objective optimization methodadable in MACROS, but essentially this one was used to stilee
problem of aircraft family optimization.

To simplify presentation below it is convenient to introdusome notations. We say that particular constrdirand
coordinatex is lower-active(upper-activg if its value equal to corresponding lower (upper) lintt= ¢} (¢ = ;) andx =

Ipareto optimal solutions are defined to be feasible desigmhkiah none of performances could be further improved withaatiicing some others
2There is no name clash between MTOW objectives and MTOW desigables: these are identically the same quantities.
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x}_(xi = x{J), correspondingly. Union of indices of all lower- and upjetive constraints constitutes set of active constraints
and set of active box bound®,. For each active constraint or box bound we also define quureling sigrs’ which is+1 for
upper-active and is-1 for lower-active entries.

3.1 Optimal Descent

This is one of the basic algorithms needed in almost all othethods, its theoretical foundations can be found in
Ref. [J. Fliege, 2000] (generic ideas could also be founaMnBrown, 2005]). Purpose is to estimate optimality of cur-
rent iteratexx in the context of multi-objective constrained problems. &y product (if current iterate is not optimal)
method allows to get the direction of optimal descent whil idirect analog of well known steepest descent direction in
single-objective unconstrained case.

Mathematically the problem is formulated as follows. Givemrent feasible point we would like to find (or ensure the
absence of) directiod in N-dimensional design space such tHas descent direction for all objectives Of' < 0, i=
1,...,K and it violates none of imposed bounds in linear approxiomati

d<d+dod<d, j=1..M X <x+d<x, k=1,..,N 1)

Generically, if current iterate is not yet optimal there amghole variety of solution to the above problem. In the cdsengle
objective optimization this freedom is fixed by requiremtentind direction of maximal objective decrease. In multjeattive
situation we would like instead to maximally reduce all abjees. Leaving for a moment aside the feasibility consitiens
we therefore obtain auxiliary optimization problem

mdinm_axd-Dfi & mint st d-Of <t (2)
|

t

supplemented with the requiremedt, < 1 (in principle, any other restriction ahnorm could be used, blt, norm leads to
most simple formulation). Note that single objectie- 1 reciped = —f is a particular case of (2). Restoring requirements
of feasibility we finally get the following linear optimizain problem which determines direction of optimal descent:

n(}itnt [0:1 x¢ islower-active
st d-Of <t Vk: dge ¢ [-1:0] x is upper-active 3)
sd-Oci<tjea [-1:1  otherwise

Note that appearance bfvariable in active constraints related restrictions is eemegularization, it account for missing
constraints curvature information. Away from optimalitfyarces optimal descent direction to be slightly away fremgents
to active constraints while near the optimal solution ife&fdisappears. In what follows we call optimal solutdof the
problem (3) optimal descent and magnitude of correspondpignalt value is called "optimal descent magnitude”. Note
that vanishing magnitude of optimal descent implies ([poptimality of considered point. Therefore linear probléhis an
universal mean to measure optimality of current iterate.

Despite of apparent simplicity of the above constructicgréhare a lot of complications which are especially relevant
in multi-objective context. For instance, special careésded when constraints matéxof linear problem (3) turns to be
rank-deficient. Real trouble related to weak Pareto optignappears when particular objective gradients, Sdif is in null
space ofA: Ofi0 ¢ null(A). In this case special type of matixreduction must be performed to catch proper descent and the
convenient way to do so is to convert problem (3) into its doahulation.

As it is usual with first order methods convergence to opiitpahight be slow when optimal descent is used in line-
search like procedures. Particular manifestation of thisnproper scaling of optimal descent: in formulation §3always
has unitL,-norm and line search becomes quite expensive simply be¢hage is no sensible prediction for the magnitude
of the line step. The usual remedy known in the field of sir@dgective unconstrained optimization is to repeat deigveof
optimal descent, but with second order information inctueeevery step. Note that in constrained case Sequentialr@tia
Programming (SQP) follows the same idea, but only parti@bnstraints are still considered in linear approximatiieir
curvatures enter the game rather indirectly via approxonatto problem Lagrangian). What we get when second order
information is included in derivation of optimal descenthe generalization of (Quasi-)Newton (QN) method to theeazfs
multiple objective functions and constraints [J. FlieggQ@). It is generically expected that methods based on Qkktesire
to be quadratically convergent and, in particular, produek-scaled search directiah
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3.2 Multi-Objective Descent

It is apparent from the above presentation that procedorebtain optimal and QN descent are universal and applicable
to virtually all optimization problems, in particular, torstrained multi-objective ones. Therefore, we could almerbosely
translate this general scheme to the considered case, lheranial distinction being in proper line step selectidndeed,
while in single-objective case there are a few efficient Bearch algorithms available, only Armijo-like line seardite is
applicable in multi-objective context. Concretely, #6ér> 1 objective functions MO Armijo rule requires to satisfy aku
Armijo criterion simultaneously for all objectives. Sinpeint suitable for usual Armijo line search is guaranteeexist for
sufficiently small line coordinates, it follows that in casfemultiple objective functions appropriate for MO Armijaiterion
points could always be found in small vicinity of currentré@te. On the other hand, Armijo rule is known as rather inieffic
even in single-objective case, therefore the use of welbdc@N descent direction becomes particular important iftimu
objective optimization.

From general point view MOPDescent algorithm implementdtirobjective constrained programming functionality,
where MO optimization is understood in local sense: purpsge find nearest to current iterate Pareto optimal solution
Indeed, by construction MOPDescent finds only a single Basptimal solution. On the other hand, the fact that it zéi$
line search along optimal or QN descent direction almostantaes that MOPDescent will find nearest to starting point
optimal point. At least, MOPDescent has no built in mechanis internal reasons to search for optimal set far away from
initial position.

3.3 Multi-Objective Optimization

Algorithm described in this section implements multi-atjee constrained programming functionality. Genericaide
underlying considered method is to maximally avoid end-fisections evaluations away from Pareto frontier. Indeedur
opinion the weakest point of most popular nowadays stoch@gtnetic, in particular) approaches is that they spenmbsi
all the time far away from optimal set trying to move whole blrf points “simultaneously” towards Pareto frontier. At
same time, as we’'ll argue below, Pareto set in many casesgseEssdistinct geometrical properties which allow to iifitt
without the need to ever calculate anything away from feritself. In a nutshell, our algorithm first finds only a fewtiopel
solutions and then performs something like diffusion al®ageto frontier. Qualitatively, the process is illustchtn Fig. 2,
see below for detailed description.

To be concrete, let us assume that initial problem is smaudtlzat corresponding Pareto front consists of finite number
of disjoint components each of which could locally be repreeed as a differentiable manifold. There are dozens ofl@nud
of pure mathematical and engineering origin which satisfg assumption. However, it is worth emphasizing that tlaeee
indeed a variety of important problems which does not satief above assumptions and for which our method is not djrect
applicable (at least not in its naive implementation).

In order to understand local geometry of Pareto optimaltseeinough to remind optimal descent construction of sactio
3.1. Namely, we noted before that magnitude of optimal dedsa natural measure of optimality of current iterate. &tver,
its vanishing value indicates that at least locally curpaint satisfies first order optimality conditions. It crddiare that the
constraintd|. < 1 entering (2) was introduced in ad hoc manner, its sole m&rpa@s to remove rescaling freeddm-» ad
which makes (2) not well defined. The same effect could beeseki by introducing, e.g.,/2|d|3 term in the objective
function. Of course, away from optimality both optimal destand descent magnitude would change upon this subtituti
however, we're considering (almost) optimal position fdrieh the difference betwedd|. < 1 constraint and A2|d|3 term
in objective is irrelevant.

To simplify presentation let us consider unconstrainedtiraljective context for which dual formulation of (2) with
added 12|d|§ term is easy to derive. Namely, one can show that optimalesfies@ctord and descent magnitudere given
byd = —yAf ofit = — %|d|2 where dual variables* solve the following quadratic problem

|

Sl iz L _
m}\|n§|)\.Df \ s.t. IZ)\. =1, A\>0 4
with positive-semidefinite Hessid®; = (Of"-Ofl). Optimality of considered point means thdtis the zero mode oB and

in general case it is the only zero mode. What are the othenesgeorsA(Y), y=1,...,K — 1 of G? In fact, one can easily
show that each vector

y _ 12 ) i
= uy) lzxi of (5)

3we'll indicate which modifications are needed (they are minjrimafact) to capture constrained case as well.
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is tangent to Pareto set at considered point and their Uifop= 1, ...,K — 1} constitutes orthonormal basis in corresponding
tangent plane. Hergy, are the eigenvalues &, GAY) = p,) AY.

How above construction modifies in presence of active caimg? It turns out that modifications are rather simple. Let
us denote by linearN x N projector onto the space tangent to all currently activestaints (including active box bounds).
Then constrained analog of (4) could be obtained upon sutieti 0f — P; Of'.

How the knowledge of Pareto set local geometry helps to dis-
cover new Pareto optimal solutions? Idea is rather simglasider
infinitesimal shift (called “scattering” in what followsydm current
optimal solutionx* along arbitrary tangent= x* +t¥). It is quite fy Anchor 0
evident that optimality measure (magnitude of optimal daegcatx 4 -
is of orderO(g). What remains to be done is to pusho true op- :
timal position using, e.g., MOPDescent method of secti@n Bhis
approach is operational even for fingebut, of course, the amount
of work needed to reach optimal set froricreases with increasing
€. Scattering and re-optimization steps are illustratedignZby the ™1
sequence of red (optimal) and blue (yet not optimized) |goaoin-
nected with black (scattering) and green (re-optimizatimes. Ev-
idently, for sufficiently small scattering steps algoritmever leaves
close vicinity of Pareto optimal solutions.

How to choose value in order to make the above approach prag-
tically sound? Surely, there is no unique solution, aldponitaccepts ;- 9
the following strategy. We require end-user to provide @lsimpa-
rameter which specifies how many optimal points he/she wiiked
to have on Pareto frontier at the end of multi-objective optation.
Note that this number is only approximate, actual amountrafiliy Figure 2. Qualitative illustration of Pareto front discovery
discovered optimal solutions crucially depends upon fgagametry algorithm (see text for details).

(which is yet unavailable). However, as on order of magratadti-

mate this is perfectly acceptable. Then we need to roughimnate

extent of Pareto frontier along each axis in objective spatés could be done using conventional notions of anchadirn
and utopia points (see below for details). User-given nunatbgoints together with estimated Pareto front bounding bo
allows to represent objective space as union non-overgpggual-sized boxes. Then the ultimate goal of algorithiho is
place at most one optimal solution into each box (of coursaeb could contain no optimal points at all which means that
Pareto frontier does not pierce this particular box). Thiggests the following policy to select proper value garameter: it
should be such that objective space poite’) and f (x* + £t¥)) belong to neighboring boxes.

3.4 Anchors search

Purpose of this stage is to roughly estimate global geonwtBareto frontier, namely, its extent along each objective
space axis (global bounding box). Note that this does notntieat we will discover optimal solutions only within this
bounding box. By definition-th anchor point has minimal value oth objective (let it befi(i)) with no regard to all other

objective values‘*jm, j # 1. However, at this point the problem of weak Pareto optimadmes into play. Namely, it might
happen that keepinigth objective at its minimal value we could still diminishrse other objectives as well. Therefore, we
formulatei-th anchor search problern=1,...,K, as follows: for allk =0, ..., K — 1 we sequentially solve

min f(+k) modK £(i-+]) modK f*(i(iv;j) mod K j=0,. k-1 )

e
I

to obtaini-th anchor poinf () = {fj(i); j=1,...,K}. Utopia f™" and nadirf™a points
Fmi”:{rr}in f*j(i); j=1,...K} fmax _ {miaxf*j(i); i=1..K} (7)

naturally define Pareto frontier global bounding box (see E), from which we derive the required objective spaceadist
between optimal solutions to be produced.

3.5 Diffusion along Pareto Frontier
During the Pareto front discovery our algorithm keeps twibodgoints: i) not optimal set: candidate points obtained
via scattering (see above) from optimal solution, which gererically do not satisfy optimality conditions) optimal set:
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discovered so far optimal solutions. Right after anchor@eatage all found anchor points are inserted buth sets. More-
over, to stabilize algorithm and to make it more robust arploer of trial not optimal candidates could also be insenteal i
the first set. Then algorithm enters second iterative “diin” stage which could be summarized as follows (see Figr2 f
illustration):

1. Pick particular not optimal candidate point from notioyatl set and push it to optimality using MOPDescent method of
section 3.2. If there are no more non-optimal candidatesrighgn terminates.

2. Goto step 1 if just optimized point falls into vicinity ofready known optimal solution (notion of “vicinity” is quéfied
by bounding box constructed previously).

3. Insert obtained solution into the optimal set and recansPareto front local geometry at this point to get conmletsis
t) in corresponding tangent plane.

4. Perform scattering from current optimal solution to getvmot optimal candidates to be inserted into non-optimial se
Namely, for each tangent directioatYY we move along it until trial point goes beyond the bounding bentered at
optimal solution in the objective space. Continue with rtexigent direction in case we already have optimal solution o
non-optimal candidate in the vicinity of trial point. Otlése, insert trial into the set of non-optimal candidates.

5. Goto step 1.

4 Pareto Frontier Analysis

Multi-objective optimization algoritm, described in 3 aimtplemented in MACROS, was used to solve family of aircrafts
optimization problem. In this section we present optimaatesults and describe the structure of obtain Paretonapti
solutions.

4.1 Qualitative Picture

For general “bird-eye” overview of Pareto frontier the moaevant quantities are the attained minimal values of each
objective functions, the so called anchor points. Indeetitive variation ofk-th function among various anchors gives
characteristic extent of Pareto frontier aldrth axis in objectives space. Already from the set of anclodmts we conclude
that Pareto frontier is very compact and that there are hahelations between objectives. Indeed, it is surprisimaf t
difference in each objective values at various anchors ishness than one percent in all cases. Taken at face valuméains
that the whole frontier collapses to almost one point, it®eixin objective space is almost negligible compared tevesit
characteristic scales. It is important to note that reductf all objectives with respect to initial values is sigesfint and
is of order 10-20%. Therefore, at least at crude 'zero ordppgroximation Pareto front squeezes not only with respect t
corresponding objective values but also with respect teesponding amounts of improvement.

4.2 Quantitative Analysis

The particular advantage of our algorithm is its adaptigsnenethod adjusts internal parameters in run-time andisllo
to see the structure of even almost squeezed optimal seidtance, during the “diffusion” stage optimal set is restoncted
similarly to heat propagation on non-linear manifolds artbes not really matters how extended the front is. Thislos to
conduct semi-quantitative analysis of the set of optimhitgmns to be presented in this section. Note that due to denfiality
reasons we intentionally omit relevant numbers and scalal figures.

Pareto Set

Numerically obtained Pareto optimal solutions is nothingthe sequence of triples, fi, ¢} representing particular optimal
design point. From these numbers along it is very difficultxtract Pareto set as a piece-wise continuous manifold b&se
we can currently do is to plot two- or three-dimensionalesdiof discretized Pareto set perhaps using sameori provided
hints on the nature of design variables. Fortunately, elendumb analysis reveals quite non-trivial structure ef Bareto
set.

First immediate observation is that bypass ratio variaBRR) always stays at its maximal allowed value, its deviatio
from upper imposed bound is negligible, see Figure 3. Cammfuis that we could safely forget about BPR keeping it
constant. Furthermore, we noted already that there is &plart symmetry among the design variables (see sectiotu),
to which it is natural to consider first the slices of Paretbadeng (aspect ratio)-(wing area) coordinates (CENTRAR/A
CENTRAL/AREA), Figure 3. Amusingly enough, for all possblalues of remaining nine coordinates (BPR is frozen)
Pareto set in CENTRAL/AR-CENTRAL/AREA plane looks almosiesdimensional, deviations being practically negligible

Exploiting the symmetry of design variables we considereRaset slices along the coordinates (SLST)—(MTOW)—
(MZFW), which are presented on Figure 4 for CENTRAL and LONGide types. Surprisingly, we see essentially two-
dimensional structure of Pareto optimal solutions, whicbanfirmed by analogous plot for SHORT design type (not shown
Moreover, it seems that two-dimensional structure is elytidue to the particular SLST dependence: for both LONG and
SHORT designs slices in (MTOW)—(MZFW) variables completetieltwo-dimensional picture, Pareto set looks one-dinaradi
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Figure 3. Left panel: bypass ratio (CENTRAL/BPR) design variable at all optimal solutions. Right panel: slice of Pareto set along CENTRAL/AR
— CENTRAL/AREA coordinates.
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Figure 4. Pareto set three-dimensional slice along CENTRAL [left] and LONG [right] designs in (SLST)-(MTOW)—-(MZFW) variables.

This could only happens if the optimal set projected ontdigalar (SLST)-(MTOW)-(MZFW) triple is everywhere parallel
to SLST axis. Note that this is in sharp contrast with CENTRddsign type properties. Overall conclusion of this rather
dumb analysis is that Pareto set in the considered problemséo be three-dimensiondl In all slices perpendicular to
LONG/SLST and SHORT/SLST optimal set looks one-dimendjompaSlicing along LONG/SLST, SHORT/SLST reveals
that Pareto set is parallel to these axes.

We could readily confirm the above proposition with multiplets of remaining slices. For instance, let us consider var
ous three-dimensional slices taken for randomly chosptetdf design variablesxcludingLONG/SLST and SHORT/SLST
parameters. As a matter of fact, in all these cases Parelmogstlike one-dimensional object. Contrary to that if wesider
coordinate slices with either LONG/SLST or SHORT/SLST paetersncludedthen optimal set appears as two-dimensional
manifold. Moreover, we could also investigate three-disi@mal slices along LONG/SLST, SHORT/SLST and any other
coordinate: conclusion is that the apparent dimensignafiPareto set is three in this case.

To summarize: Pareto set is likely to be a three-dimensioraalifold with very specific structure: it goes in parallel to
LONG/SLST and SHORT/SLST coordinate axis.

Pareto Front

Pareto front is clearly a derived quantity with respect toeRaset, it is obtained by mapping Pareto set into objective
space via given objective functions. In non-degenerat@atdn specific features of Pareto set imply similar prapsrof
Pareto front, however, we do knawpriori that degeneracies are present in the considered probletreand Pareto front is to
be investigated independently. Due to the lack of convenisnalization tools we could only perform similar to abal@nb
analysis of Pareto front. Noted above symmetry of the proldeeatly simplifies reasonable choice of objective funio
to study in three-dimensional slices. Indeed, naturalgsiinclude (COC)—(FUEL)—(MTOW) variables taken sepayafet
CENTRAL, LONG and SHORT design types. Corresponding platspaesented on Figures 5 and 6 for CENTRAL, LONG
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Figure 5. Pareto front projections onto coordinate triple (COC)—(FUEL)—(MTOW) for CENTRAL (left) and LONG (right) design type.

and SHORT designs.

It is apparent that these front projections are very sintdanalogous pictures of Pareto set. Indeed, everywhestd?ar
front looks one-dimensional unless LONG/COC or SHORT/CQujectives are considered, see Figure 7. Once one of
COC model responses for LONG or SHORT design types are taiteraccount Pareto front projection appears to be two-
dimensional object which goes parallel to correspondingCGRis (see Figure 8). Moreover, inclusion of both LONG/COC
and SHORT/COC objectives into projection makes Paretd tmlook like three dimensional manifold, Figure 9.

Thus the plausible conclusion on the structure of
Pareto front is similar to that of Pareto set. We
clearly see that at fixed values of LONG/COC and

Optimal set =

is tempting to conclude that these four design variables
and responses factually factorize. But of course, quanti-
tative confirmation of this picture requires careful study

of Pareto set/front interrelation which goes far beyond

the capabilities of performed dumb analysis.

However, what we could quantitatively confirm is
three-dimensional local structure of Pareto front. In-
deed, we noted already that utilized multi-objective al-
gorithm at its diffusion stage numerically determines lo-
cal dimensionality via calculation of the eigenstructure
of projected Gram matrix, see section 3. Hence we could
reconstruct effective dimension of Pareto frontier by dmgthe number of non-zero eigenvalues. It turns out thathiso-
lute majority of cases there are exactly three non-zeranggjaes at locally Pareto optimal points. Deviation frons ttule
happens in less than 0.1% of cases and might be explainedéypmerical occasional instabilities.

Anchor points SHORT/COC objectives Pareto front is essentially one-

";-hf;-‘, dimensional, while its dependence upon these distin-

: ”-"t':“!-';' guished responses is quite specific: front extends parallel
I ,‘J'J 'y = to LONG/COC and SHORT/COC axes. Taking into ac-
AT/MTOW [ - 'l:,.-li-l' ;'-':l-_ . count qualitatively identical behavior of Pareto set with
C o e T respect to LONG/SLST and SHORT/SLST variables it

SHORT/FUEL
SHORT/COC

Figure 6. Pareto front projections onto coordinate triple (COC)—
(FUEL)~(MTOW) for SHORT design type.

4.2.1 Active Constraints It remains to discuss the behavior of constraints on Paptmal solution set. Equalities
are always active constraints and it turns out that theyratedd satisfied with great precision on all obtained saisticAs
far as inequalities are concerned, direct inspection fs\that most of them are inactive on the Pareto set. Howevierdbes
not hold for two particular constraints of CENTRAL type. Adtugh their magnitudes seems to be relatively large, they ar
nevertheless much smaller than characteristic scales Wwawonclude that there are eight active constraints inghsidered
optimization problem. Amusingly enough, this nicely fite tihree-dimensional structure of Pareto frontier. Indeedhave
originally 12 degrees of freedom (DoF), one of which (BPRjixed at upper box bound. Among remaining 11 DoF six
are fixed by the equality constraints and 2 are eliminateddiyainequalities. Therefore, there remains only 3 degde
freedom which dictate established dimensionality of Refrentier.
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4.3 Summary

We performed detailed quantitative analysis of obtainetintgd solutions. Pareto set appears to be compact and is
essentially three-dimensional. However, its embedditg time design space is very specific. Namely, it goes patalleto
distinguished coordinate axes, LONG/SLST and SHORT/SIA$Tixed values of these coordinates Pareto front seems to be
one-dimensional. Pareto front inherits main propertieBarketo set. Namely, it appears to be also three-dimensidjedt,
however, its embedding into objectives space is ratherligeclt seems that Pareto front as a manifold is everywharalfel
to two objectives axes, LONG/COC and SHORT/COC. At fixed @alaf these observables Pareto front is likely to be one-
dimensional non-linear curve embedded inte 2 = 7 dimensional space. The set of active constraints on Papgimal
solutions seems to be small. Apart from “trivial” activity all equalities there are only two active inequality coastts of
CENTRAL design type.

5 Conclusions

In this paper we considered the problem of finding a set ofgdtparameters governing conceptual design stage per-
formances of family of aircrafts. This problem arises nallyrin aerospace industry: production and operationaiscase
clearly minimal when different aircrafts have as much comroomponents as possible, however, they target distindtehar
segments and hence must be sufficiently distinct. Quamétaeatment of these conflicting goals reduces to the isolf
multi-objective constrained optimization problem, pautar features of which include high dimensionality of altjee space
and large number of imposed constraints. Therefore, evénsinplified underlying physical models for geometry, aero
dynamics, weights and performances, the problem is quidlettging and, in fact, could not be solved with conventiona
methods.

Here the advantages of MACROS Generic Tool for OptimizafiddiTADVANCE, 2013] proved to be invaluable to ex-
haustively solve the problem. Using MACROS we were able t fiot only the designs with greatly improved performances

Optimalset = Optimal set =
i Anchor points Anchor points

IORT/MTOW 1ORT/FUEL

LONG/MTC LONG/MTC

LONG/FUEL CENTRAL/FUEL

Figure 7. Pareto front projections onto various coordinate triples excludingLONG/COC and SHORT/COC objectives. Note that Pareto front
looks one-dimensional.

Optimalset = Optimalset =
Anchor points Anchor points
uf '.-‘: %
: " -l.' lr. = | |
: " L .l-
L U";I-'p o
ORT/MTOW "

LONG/COC LONG/COC

CENTRAL/FUEL LONG/MTOW

Figure 8. Pareto front projections onto various coordinate triples including either LONG/COC or SHORT/COC design variables. Note that
Pareto front looks two-dimensional.
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Optimal set = Optimal set =
Anchor points Anchor points
- ': T [
" mam " 3" ING/MTOW
RAL/FUE ey 2" g .

LONG/COC >
HORT,
SHORT/COC SHORT/COC

LONG/COC

Figure 9. Pareto front projections onto various coordinate triples including both LONG/COC and SHORT/COC design variables. Note that
Pareto front looks three-dimensional.

(from 10 to 20 percent), but to investigate the fine structirBareto Set and Front as well. It turns out that generic dime
sionality of Pareto optimal variety is three, however, sbedding into design/performance criteria spaces is vecylgar:
dependence upon two parameters/criteria essentiallgrfaes making Pareto set effectively one-dimensionalaibje
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