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ABSTRACT

We consider conceptual design problem of a family of aircrafts of different capacities yet having maximum
number of elements in common to reduce maintenance and operational costs. Each family member has its own
operational requirements and cost criteria, which makes the family selection a multi-criteria equality constrained
optimization problem. The conceptual design task supplemented with semi-empirical models for geometry, aerody-
namics, weights and performances is successfully solved using MACROS software developed by DATADVANCE.
We managed to greatly improve considered performance measures and quantitatively describe the whole variety of
optimal non-dominated solutions.

1 Introduction
Conceptual Design is the very first step of aircraft design project during which the general arrangement of the aircraft is

defined, selecting the overall positions and shapes of various components, as well as the most suitable technologies. These
choices are crucial for the project progress and its profitability while wide range of uncertainty is attached to most of the
assumptions and evaluation processes. The economical viability of a given project of a new airplane is even more difficult to
assess as it has to be put in the perspective of the competition landscape.

Actually, in order to make the largest feedback on R&D investment and to maximize the product attractiveness it is usual
to consider the production of a family of aircrafts of different capacities rather than an aircraft alone. With highly similar
products, this allows covering a more important market partthan a single aircraft. All the members of this family of aircrafts
have different fuselage lengths and characteristic weights but they have in common a maximum number of elements which
may reduce drastically airliners maintenance and operational costs.
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Figure 1. Market place covered by 3-aircraft family (’NM’

abbreviation stands for Nautical Miles).

Generally, there is a central configuration from which are taken
the other members of the family. These are usually realized adding or
removing fuselage sections, adapting engine rating thrusts or chang-
ing engines and optimizing structural reinforcements of a limited
number of components. This will result in airplanes with different
nominal ranges and characteristic weights. To give an example, Fig. 1
shows the market place covered by a family of three aircrafts. It is
important to notice that each aircraft in this type of graphic is facing
existing, or projected, competitor airplanes.

Being inside slightly different market segments, each member of
the family has its own operational requirements but also itsown cost
criteria which makes the family optimization a basic multi-criteria
problem. Some of the design parameters (as the wing design param-
eters) are common to all members of the family but some others(as
the engine maximum thrust) are specific to each member. Due to
coupling through family parameters, any design parameter (family or
member specific) can be sized by any member specific constraints. To complicate a little bit the picture, it is usual to put
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in concurrence several criteria such as Cash Operating Cost(COC), Maximum Take Off Weight (MTOW) and Mission Fuel
(FUEL) in order to assess some robustness of the optimum.

Due to business strategic considerations, aircraft familyoptimization requires that several possible solutions be exhibited
in order to let freedom to decision making. The Pareto Front in the criteria space and its associated Pareto Set in the parameter
space1 is probably one of the most relevant mathematical tool to capture most of possible compromises.

The following study illustrates this approach. AIRBUS in-house simulation toolbox was used to evaluate design criteria
and constraints. The toolbox is based on semi-empirical models covering all main physics that are interacting at conceptual
design phase: geometry, aerodynamics, weights and performances. Implemented processes are classical and performed inde-
pendently for each member of the family of three aircraft. These processes are coupled only through input design parameters
and member specific constraints. MACROS Generic Tool for Optimization [DATADVANCE, 2013] was used to perform
multi-objective optimization.

In section 2 we describe the formulation of the multi-objective optimization problem. Section 3 describes the details of
MACROS multi-objective optimization algorithm. In section 4 we present results of optimization of family of aircrafts.

2 Problem Formulation
In the considered multi-objective optimization problem design variables are naturally structured: there are three different

aircraft families “CENTRAL”, “LONG” and “SHORT”, each of which is characterized by three specific parameters: “MTOW”
(Maximum TakeOff Weight), “MZFW” (Maximum Zero Fuel Weight)and “SLST” (See Level Specific Thrust). However,
apparent symmetry of design types is broken for CENTRAL design: it additionally possesses “AR” (wing Aspect Ratio),
“AREA” (wing area) and “BPR” (engine ByPass Ratio) design variables, which provide the interconnection between different
families: in their absence the problem would break up into three independent models for each design type. In the sequel
we abbreviate the names of all design parameters, for instance, “SHORT/MTOW” stands for SHORT design type MTOW
variable. Each design variable is naturally bounded, therearea priori known attainable minimal/maximal values.

Reference design point, also used as a starting point for optimization, corresponds to one of the currently considered at
AIRBUS family of future aircrafts.

The problem is characterized by nine performance criteria (objective functions) to be minimized and they follow the
same symmetry pattern. For each design type we consider three performance measures: “COC” (operational cost), “FUEL”
(fuel consumption) and “MTOW” (maximum takeoff weight)2. Problem is subjected to 33 non-linear constraints. Particular
symmetry is also clearly visible among the imposed constraints: each design type possesses its own set 9 inequalities and 2
normalized to zero equalities.

As far as technical details are concerned, the problem is formulated in a black box fashion, optimization algorithms could
only access the values of performances/constraints at different designs. In turn, the modelling is performed within Scilab
scientific modelling environment [Scilab, 2013], which interacts with optimization software via input/output text files.

To summarize: the problem design space is not large (N=12), but the prime difficulty is to consider many performance
measures (K=9) simultaneously. We stress that such large number of objective functions is notoriously difficult to handle,
we’re not aware of any efficient optimization algorithm capable to deal with such cases. Moreover, imposed set of constraints
(M=33 in total, six of which are equalities) utterly complicates the model and it becomes a real challenge to solve it.

3 Solution Methodology
This section succinctly describes optimization algorithms which were used to solve given problems. Consideration is

indeed very brief, in a nutshell only, simply because it goesfar beyond the scope of this paper to treat all subtleties of
concrete algorithm implementation. Instead our primal goal is give a feeling of underlying ideas leaving aside all technicalities
involved. We’re in haste to add, however, that utilized algorithms are not experimental and are in production stage for several
years already as a part of MACROS Generic Tool for Optimization (GTOpt) developed by DATADVANCE. Moreover, GTOpt
itself is only one of many other Generic Tools available in MACROS and its front end named Problem Solving Environment
(PSE), please refer to [DATADVANCE, 2013] for details and further references.

In sections 3.1 and 3.2 we describe a few algorithms aimed to discover nearest to current iterate (locally) Pareto optimal
solutions. Then in Sec. 3.3 we discuss Pareto frontier localgeometry, knowledge of which allows us to spread from already
known optimal designs towards nearby other optimal solutions. Sections 3.4 and 3.5 provide summary of multi-objective
optimization approach used in GTOpt, prime advantage of which is the ability to always stay close to optimal set. Note that
this is not the only multi-objective optimization method available in MACROS, but essentially this one was used to solvethe
problem of aircraft family optimization.

To simplify presentation below it is convenient to introduce some notations. We say that particular constraintci and
coordinatexi is lower-active(upper-active) if its value equal to corresponding lower (upper) limit,ci = ci

L(ci = ci
U ) andxi =

1Pareto optimal solutions are defined to be feasible designs atwhich none of performances could be further improved without sacrificing some others
2There is no name clash between MTOW objectives and MTOW designvariables: these are identically the same quantities.
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xi
L(xi = xi

U ), correspondingly. Union of indices of all lower- and upper-active constraints constitutes set of active constraintsA

and set of active box boundsAb. For each active constraint or box bound we also define corresponding signsi which is+1 for
upper-active and is−1 for lower-active entries.

3.1 Optimal Descent
This is one of the basic algorithms needed in almost all othermethods, its theoretical foundations can be found in

Ref. [J. Fliege, 2000] (generic ideas could also be found in [M. Brown, 2005]). Purpose is to estimate optimality of cur-
rent iteratexk in the context of multi-objective constrained problems. Asa by product (if current iterate is not optimal)
method allows to get the direction of optimal descent which is a direct analog of well known steepest descent direction in
single-objective unconstrained case.

Mathematically the problem is formulated as follows. Givencurrent feasible pointx we would like to find (or ensure the
absence of) directiond in N-dimensional design space such thatd is descent direction for all objectivesd ·∇ f i ≤ 0, i =
1, ...,K and it violates none of imposed bounds in linear approximation

c j
L ≤ c j + d ·∇c j ≤ c j

U , j = 1, ...,M xk
L ≤ xk + d ≤ xk

U , k= 1, ...,N (1)

Generically, if current iterate is not yet optimal there area whole variety of solution to the above problem. In the case of single
objective optimization this freedom is fixed by requirementto find direction of maximal objective decrease. In multi-objective
situation we would like instead to maximally reduce all objectives. Leaving for a moment aside the feasibility considerations
we therefore obtain auxiliary optimization problem

min
d

max
i

d ·∇ f i ⇔ min
d,t

t s.t. d ·∇ f i ≤ t (2)

supplemented with the requirement|d|∞ ≤ 1 (in principle, any other restriction ond norm could be used, butL∞ norm leads to
most simple formulation). Note that single objectiveK = 1 reciped =−∇ f is a particular case of (2). Restoring requirements
of feasibility we finally get the following linear optimization problem which determines direction of optimal descent:

min
d,t

t

s.t. d ·∇ f i ≤ t
sj d ·∇c j ≤ t j ∈ A

∀k : dk ∈







[0 : 1] xk is lower-active
[−1 : 0] xk is upper-active
[−1 : 1] otherwise

(3)

Note that appearance oft variable in active constraints related restrictions is a pure regularization, it account for missing
constraints curvature information. Away from optimality it forces optimal descent direction to be slightly away from tangents
to active constraints while near the optimal solution its effect disappears. In what follows we call optimal solutiond of the
problem (3) optimal descent and magnitude of correspondingoptimal t value is called ”optimal descent magnitude”. Note
that vanishing magnitude of optimal descent implies (local) optimality of considered point. Therefore linear problem(3) is an
universal mean to measure optimality of current iterate.

Despite of apparent simplicity of the above construction there are a lot of complications which are especially relevant
in multi-objective context. For instance, special care is needed when constraints matrixA of linear problem (3) turns to be
rank-deficient. Real trouble related to weak Pareto optimality appears when particular objective gradients, say∇ f i0 is in null
space ofA: ∇ f i0 ∈ null(A). In this case special type of matrixA reduction must be performed to catch proper descent and the
convenient way to do so is to convert problem (3) into its dualformulation.

As it is usual with first order methods convergence to optimality might be slow when optimal descent is used in line-
search like procedures. Particular manifestation of this is improper scaling of optimal descent: in formulation (3)d always
has unitL∞-norm and line search becomes quite expensive simply because there is no sensible prediction for the magnitude
of the line step. The usual remedy known in the field of single-objective unconstrained optimization is to repeat derivation of
optimal descent, but with second order information included at every step. Note that in constrained case Sequential Quadratic
Programming (SQP) follows the same idea, but only partially(constraints are still considered in linear approximation, their
curvatures enter the game rather indirectly via approximations to problem Lagrangian). What we get when second order
information is included in derivation of optimal descent isthe generalization of (Quasi-)Newton (QN) method to the case of
multiple objective functions and constraints [J. Fliege, 2008]. It is generically expected that methods based on QN descent are
to be quadratically convergent and, in particular, producewell-scaled search directiond.
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3.2 Multi-Objective Descent
It is apparent from the above presentation that procedures to obtain optimal and QN descent are universal and applicable

to virtually all optimization problems, in particular, to constrained multi-objective ones. Therefore, we could almost verbosely
translate this general scheme to the considered case, the only crucial distinction being in proper line step selection.Indeed,
while in single-objective case there are a few efficient linesearch algorithms available, only Armijo-like line searchrule is
applicable in multi-objective context. Concretely, forK > 1 objective functions MO Armijo rule requires to satisfy usual
Armijo criterion simultaneously for all objectives. Sincepoint suitable for usual Armijo line search is guaranteed toexist for
sufficiently small line coordinates, it follows that in caseof multiple objective functions appropriate for MO Armijo criterion
points could always be found in small vicinity of current iterate. On the other hand, Armijo rule is known as rather inefficient
even in single-objective case, therefore the use of well scaled QN descent direction becomes particular important in multi-
objective optimization.

From general point view MOPDescent algorithm implements multi-objective constrained programming functionality,
where MO optimization is understood in local sense: purposeis to find nearest to current iterate Pareto optimal solution.
Indeed, by construction MOPDescent finds only a single Pareto-optimal solution. On the other hand, the fact that it utilizes
line search along optimal or QN descent direction almost guarantees that MOPDescent will find nearest to starting point
optimal point. At least, MOPDescent has no built in mechanism or internal reasons to search for optimal set far away from
initial position.

3.3 Multi-Objective Optimization
Algorithm described in this section implements multi-objective constrained programming functionality. Generic idea

underlying considered method is to maximally avoid end-user functions evaluations away from Pareto frontier. Indeed,in our
opinion the weakest point of most popular nowadays stochastic (genetic, in particular) approaches is that they spend almost
all the time far away from optimal set trying to move whole bunch of points “simultaneously” towards Pareto frontier. At the
same time, as we’ll argue below, Pareto set in many cases possesses distinct geometrical properties which allow to identify it
without the need to ever calculate anything away from frontier itself. In a nutshell, our algorithm first finds only a few optimal
solutions and then performs something like diffusion alongPareto frontier. Qualitatively, the process is illustrated on Fig. 2,
see below for detailed description.

To be concrete, let us assume that initial problem is smooth and that corresponding Pareto front consists of finite number
of disjoint components each of which could locally be represented as a differentiable manifold. There are dozens of problems
of pure mathematical and engineering origin which satisfy this assumption. However, it is worth emphasizing that thereare
indeed a variety of important problems which does not satisfy the above assumptions and for which our method is not directly
applicable (at least not in its naive implementation).

In order to understand local geometry of Pareto optimal set it is enough to remind optimal descent construction of section
3.1. Namely, we noted before that magnitude of optimal descent is a natural measure of optimality of current iterate. Moreover,
its vanishing value indicates that at least locally currentpoint satisfies first order optimality conditions. It crucial here that the
constraint|d|∞ ≤ 1 entering (2) was introduced in ad hoc manner, its sole purpose was to remove rescaling freedomd → αd
which makes (2) not well defined. The same effect could be achieved by introducing, e.g., 1/2|d|22 term in the objective
function. Of course, away from optimality both optimal descent and descent magnitude would change upon this substitution,
however, we’re considering (almost) optimal position for which the difference between|d|∞ ≤ 1 constraint and 1/2|d|22 term
in objective is irrelevant.

To simplify presentation let us consider unconstrained multi-objective context3 for which dual formulation of (2) with
added 1/2|d|22 term is easy to derive. Namely, one can show that optimal descent vectord and descent magnitudet are given
by d = −∑

i
λ∗

i ∇ f i , t = − 1
2|d|

2 where dual variablesλ∗ solve the following quadratic problem

min
λ

1
2
|λi ∇ f i |2 s.t. ∑

i
λi = 1, λi ≥ 0 (4)

with positive-semidefinite HessianGi j = (∇ f i ·∇ f j). Optimality of considered point means thatλ∗ is the zero mode ofG and
in general case it is the only zero mode. What are the other eigenvectorsλ(γ), γ = 1, ...,K −1 of G? In fact, one can easily
show that each vector

tγ = µ−1/2
(γ) ∑

i
λ(γ)

i ∇ f i (5)

3We’ll indicate which modifications are needed (they are minimal, in fact) to capture constrained case as well.
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is tangent to Pareto set at considered point and their union{tγ,γ = 1, ...,K−1} constitutes orthonormal basis in corresponding
tangent plane. Hereµ(γ) are the eigenvalues ofG, Gλ(γ) = µ(γ) λ(γ).

How above construction modifies in presence of active constraints? It turns out that modifications are rather simple. Let
us denote byPA linearN×N projector onto the space tangent to all currently active constraints (including active box bounds).
Then constrained analog of (4) could be obtained upon substitution ∇ f i −→ PA ∇ f i .

f0

f1
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Nadir

L 0

L1

Anchor 1

Anchor 0

Figure 2. Qualitative illustration of Pareto front discovery

algorithm (see text for details).

How the knowledge of Pareto set local geometry helps to dis-
cover new Pareto optimal solutions? Idea is rather simple, consider
infinitesimal shift (called “scattering” in what follows) from current
optimal solutionx∗ along arbitrary tangentx= x∗+ ε t(γ). It is quite
evident that optimality measure (magnitude of optimal descent) atx
is of orderO(ε). What remains to be done is to pushx to true op-
timal position using, e.g., MOPDescent method of section 3.2. This
approach is operational even for finiteε, but, of course, the amount
of work needed to reach optimal set fromx increases with increasing
ε. Scattering and re-optimization steps are illustrated on Fig. 2 by the
sequence of red (optimal) and blue (yet not optimized) points con-
nected with black (scattering) and green (re-optimization) lines. Ev-
idently, for sufficiently small scattering steps algorithmnever leaves
close vicinity of Pareto optimal solutions.

How to chooseε value in order to make the above approach prac-
tically sound? Surely, there is no unique solution, algorithm accepts
the following strategy. We require end-user to provide a single pa-
rameter which specifies how many optimal points he/she wouldlike
to have on Pareto frontier at the end of multi-objective optimization.
Note that this number is only approximate, actual amount of finally
discovered optimal solutions crucially depends upon frontgeometry
(which is yet unavailable). However, as on order of magnitude esti-
mate this is perfectly acceptable. Then we need to roughly estimate
extent of Pareto frontier along each axis in objective space. This could be done using conventional notions of anchors, nadir
and utopia points (see below for details). User-given number of points together with estimated Pareto front bounding box
allows to represent objective space as union non-overlapping equal-sized boxes. Then the ultimate goal of algorithm isto
place at most one optimal solution into each box (of course, boxes could contain no optimal points at all which means that
Pareto frontier does not pierce this particular box). This suggests the following policy to select proper value ofε parameter: it
should be such that objective space pointsf (x∗) and f (x∗+ ε t(γ)) belong to neighboring boxes.

3.4 Anchors search
Purpose of this stage is to roughly estimate global geometryof Pareto frontier, namely, its extent along each objective

space axis (global bounding box). Note that this does not mean that we will discover optimal solutions only within this
bounding box. By definitioni-th anchor point has minimal value ofi-th objective (let it bef i

∗(i)) with no regard to all other

objective valuesf j
∗(i), j 6= i. However, at this point the problem of weak Pareto optimality comes into play. Namely, it might

happen that keepingi-th objective at its minimal value we could still diminish some other objectives as well. Therefore, we
formulatei-th anchor search problem,i = 1, ...,K, as follows: for allk= 0, ...,K−1 we sequentially solve

min f (i+k) mod K f (i+ j) mod K ≤ f (i+ j) mod K
∗(i) j = 0, ...,k−1 (6)

to obtaini-th anchor point~f (i) = { f j
∗(i) ; j = 1, ...,K}. Utopia~f min and nadir~f max points

~f min = {min
i

f j
∗(i) ; j = 1, ...,K} ~f max= {max

i
f j
∗(i) ; j = 1, ...,K} (7)

naturally define Pareto frontier global bounding box (see Fig. 2), from which we derive the required objective space distance
between optimal solutions to be produced.

3.5 Diffusion along Pareto Frontier
During the Pareto front discovery our algorithm keeps two set of points: i) not optimal set: candidate points obtained

via scattering (see above) from optimal solution, which aregenerically do not satisfy optimality conditions;ii ) optimal set:
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discovered so far optimal solutions. Right after anchor search stage all found anchor points are inserted intobothsets. More-
over, to stabilize algorithm and to make it more robust any number of trial not optimal candidates could also be inserted into
the first set. Then algorithm enters second iterative “diffusion” stage which could be summarized as follows (see Fig. 2 for
illustration):

1. Pick particular not optimal candidate point from not-optimal set and push it to optimality using MOPDescent method of
section 3.2. If there are no more non-optimal candidates algorithm terminates.

2. Goto step 1 if just optimized point falls into vicinity of already known optimal solution (notion of “vicinity” is quantified
by bounding box constructed previously).

3. Insert obtained solution into the optimal set and reconstruct Pareto front local geometry at this point to get complete basis
t(γ) in corresponding tangent plane.

4. Perform scattering from current optimal solution to get new not optimal candidates to be inserted into non-optimal set.
Namely, for each tangent direction± t(γ) we move along it until trial point goes beyond the bounding box centered at
optimal solution in the objective space. Continue with nexttangent direction in case we already have optimal solution or
non-optimal candidate in the vicinity of trial point. Otherwise, insert trial into the set of non-optimal candidates.

5. Goto step 1.

4 Pareto Frontier Analysis
Multi-objective optimization algoritm, described in 3 andimplemented in MACROS, was used to solve family of aircrafts

optimization problem. In this section we present optimization results and describe the structure of obtain Pareto optimal
solutions.

4.1 Qualitative Picture
For general “bird-eye” overview of Pareto frontier the mostrelevant quantities are the attained minimal values of each

objective functions, the so called anchor points. Indeed, relative variation ofk-th function among various anchors gives
characteristic extent of Pareto frontier alongk-th axis in objectives space. Already from the set of anchor points we conclude
that Pareto frontier is very compact and that there are high correlations between objectives. Indeed, it is surprising that
difference in each objective values at various anchors is much less than one percent in all cases. Taken at face value thismeans
that the whole frontier collapses to almost one point, its extent in objective space is almost negligible compared to relevant
characteristic scales. It is important to note that reduction of all objectives with respect to initial values is significant and
is of order 10-20%. Therefore, at least at crude ’zero order’approximation Pareto front squeezes not only with respect to
corresponding objective values but also with respect to corresponding amounts of improvement.

4.2 Quantitative Analysis
The particular advantage of our algorithm is its adaptiveness: method adjusts internal parameters in run-time and allows

to see the structure of even almost squeezed optimal set. Forinstance, during the “diffusion” stage optimal set is reconstructed
similarly to heat propagation on non-linear manifolds and it does not really matters how extended the front is. This allows us to
conduct semi-quantitative analysis of the set of optimal solutions to be presented in this section. Note that due to confidentiality
reasons we intentionally omit relevant numbers and scales in all figures.

Pareto Set
Numerically obtained Pareto optimal solutions is nothing but the sequence of triples{xi , fi ,ci} representing particular optimal
design point. From these numbers along it is very difficult toextract Pareto set as a piece-wise continuous manifold. Thebest
we can currently do is to plot two- or three-dimensional slices of discretized Pareto set perhaps using somea priori provided
hints on the nature of design variables. Fortunately, even this dumb analysis reveals quite non-trivial structure of the Pareto
set.

First immediate observation is that bypass ratio variable (BPR) always stays at its maximal allowed value, its deviation
from upper imposed bound is negligible, see Figure 3. Conclusion is that we could safely forget about BPR keeping it
constant. Furthermore, we noted already that there is a particular symmetry among the design variables (see section 2),due
to which it is natural to consider first the slices of Pareto set along (aspect ratio)-(wing area) coordinates (CENTRAL/AR-
CENTRAL/AREA), Figure 3. Amusingly enough, for all possible values of remaining nine coordinates (BPR is frozen)
Pareto set in CENTRAL/AR-CENTRAL/AREA plane looks almost one-dimensional, deviations being practically negligible.

Exploiting the symmetry of design variables we consider Pareto set slices along the coordinates (SLST)–(MTOW)–
(MZFW), which are presented on Figure 4 for CENTRAL and LONG design types. Surprisingly, we see essentially two-
dimensional structure of Pareto optimal solutions, which is confirmed by analogous plot for SHORT design type (not shown).
Moreover, it seems that two-dimensional structure is entirely due to the particular SLST dependence: for both LONG and
SHORT designs slices in (MTOW)–(MZFW) variables completely hide two-dimensional picture, Pareto set looks one-dimensional.
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Figure 3. Left panel: bypass ratio (CENTRAL/BPR) design variable at all optimal solutions. Right panel: slice of Pareto set along CENTRAL/AR

– CENTRAL/AREA coordinates.

Figure 4. Pareto set three-dimensional slice along CENTRAL [left] and LONG [right] designs in (SLST)–(MTOW)–(MZFW) variables.

This could only happens if the optimal set projected onto particular (SLST)–(MTOW)–(MZFW) triple is everywhere parallel
to SLST axis. Note that this is in sharp contrast with CENTRALdesign type properties. Overall conclusion of this rather
dumb analysis is that Pareto set in the considered problem seems to be three-dimensional:i) In all slices perpendicular to
LONG/SLST and SHORT/SLST optimal set looks one-dimensional; ii ) Slicing along LONG/SLST, SHORT/SLST reveals
that Pareto set is parallel to these axes.

We could readily confirm the above proposition with multipleplots of remaining slices. For instance, let us consider vari-
ous three-dimensional slices taken for randomly chosen triple of design variablesexcludingLONG/SLST and SHORT/SLST
parameters. As a matter of fact, in all these cases Pareto setlooks like one-dimensional object. Contrary to that if we consider
coordinate slices with either LONG/SLST or SHORT/SLST parametersincludedthen optimal set appears as two-dimensional
manifold. Moreover, we could also investigate three-dimensional slices along LONG/SLST, SHORT/SLST and any other
coordinate: conclusion is that the apparent dimensionality of Pareto set is three in this case.

To summarize: Pareto set is likely to be a three-dimensionalmanifold with very specific structure: it goes in parallel to
LONG/SLST and SHORT/SLST coordinate axis.

Pareto Front
Pareto front is clearly a derived quantity with respect to Pareto set, it is obtained by mapping Pareto set into objective

space via given objective functions. In non-degenerate situation specific features of Pareto set imply similar properties of
Pareto front, however, we do knowa priori that degeneracies are present in the considered problem andhence Pareto front is to
be investigated independently. Due to the lack of convenient visualization tools we could only perform similar to abovedumb
analysis of Pareto front. Noted above symmetry of the problem greatly simplifies reasonable choice of objective functions
to study in three-dimensional slices. Indeed, natural triples include (COC)–(FUEL)–(MTOW) variables taken separately for
CENTRAL, LONG and SHORT design types. Corresponding plots are presented on Figures 5 and 6 for CENTRAL, LONG
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Figure 5. Pareto front projections onto coordinate triple (COC)–(FUEL)–(MTOW) for CENTRAL (left) and LONG (right) design type.

and SHORT designs.

It is apparent that these front projections are very similarto analogous pictures of Pareto set. Indeed, everywhere Pareto
front looks one-dimensional unless LONG/COC or SHORT/COC objectives are considered, see Figure 7. Once one of
COC model responses for LONG or SHORT design types are taken into account Pareto front projection appears to be two-
dimensional object which goes parallel to corresponding COC axis (see Figure 8). Moreover, inclusion of both LONG/COC
and SHORT/COC objectives into projection makes Pareto front to look like three dimensional manifold, Figure 9.

Figure 6. Pareto front projections onto coordinate triple (COC)–

(FUEL)–(MTOW) for SHORT design type.

Thus the plausible conclusion on the structure of
Pareto front is similar to that of Pareto set. We
clearly see that at fixed values of LONG/COC and
SHORT/COC objectives Pareto front is essentially one-
dimensional, while its dependence upon these distin-
guished responses is quite specific: front extends parallel
to LONG/COC and SHORT/COC axes. Taking into ac-
count qualitatively identical behavior of Pareto set with
respect to LONG/SLST and SHORT/SLST variables it
is tempting to conclude that these four design variables
and responses factually factorize. But of course, quanti-
tative confirmation of this picture requires careful study
of Pareto set/front interrelation which goes far beyond
the capabilities of performed dumb analysis.

However, what we could quantitatively confirm is
three-dimensional local structure of Pareto front. In-
deed, we noted already that utilized multi-objective al-
gorithm at its diffusion stage numerically determines lo-
cal dimensionality via calculation of the eigenstructure
of projected Gram matrix, see section 3. Hence we could

reconstruct effective dimension of Pareto frontier by counting the number of non-zero eigenvalues. It turns out that inabso-
lute majority of cases there are exactly three non-zero eigenvalues at locally Pareto optimal points. Deviation from this rule
happens in less than 0.1% of cases and might be explained by pure numerical occasional instabilities.

4.2.1 Active Constraints It remains to discuss the behavior of constraints on Pareto optimal solution set. Equalities
are always active constraints and it turns out that they are indeed satisfied with great precision on all obtained solutions. As
far as inequalities are concerned, direct inspection reveals that most of them are inactive on the Pareto set. However, this does
not hold for two particular constraints of CENTRAL type. Although their magnitudes seems to be relatively large, they are
nevertheless much smaller than characteristic scales. Thus we conclude that there are eight active constraints in the considered
optimization problem. Amusingly enough, this nicely fits the three-dimensional structure of Pareto frontier. Indeed,we have
originally 12 degrees of freedom (DoF), one of which (BPR) isfixed at upper box bound. Among remaining 11 DoF six
are fixed by the equality constraints and 2 are eliminated by active inequalities. Therefore, there remains only 3 degrees of
freedom which dictate established dimensionality of Pareto frontier.
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4.3 Summary
We performed detailed quantitative analysis of obtained optimal solutions. Pareto set appears to be compact and is

essentially three-dimensional. However, its embedding into the design space is very specific. Namely, it goes parallelto two
distinguished coordinate axes, LONG/SLST and SHORT/SLST.At fixed values of these coordinates Pareto front seems to be
one-dimensional. Pareto front inherits main properties ofPareto set. Namely, it appears to be also three-dimensionalobject,
however, its embedding into objectives space is rather peculiar. It seems that Pareto front as a manifold is everywhere parallel
to two objectives axes, LONG/COC and SHORT/COC. At fixed values of these observables Pareto front is likely to be one-
dimensional non-linear curve embedded into 9− 2 = 7 dimensional space. The set of active constraints on Paretooptimal
solutions seems to be small. Apart from “trivial” activity of all equalities there are only two active inequality constraints of
CENTRAL design type.

5 Conclusions
In this paper we considered the problem of finding a set of optimal parameters governing conceptual design stage per-

formances of family of aircrafts. This problem arises naturally in aerospace industry: production and operational costs are
clearly minimal when different aircrafts have as much common components as possible, however, they target distinct market
segments and hence must be sufficiently distinct. Quantitative treatment of these conflicting goals reduces to the solution of
multi-objective constrained optimization problem, particular features of which include high dimensionality of objective space
and large number of imposed constraints. Therefore, even with simplified underlying physical models for geometry, aero-
dynamics, weights and performances, the problem is quite challenging and, in fact, could not be solved with conventional
methods.

Here the advantages of MACROS Generic Tool for Optimization[DATADVANCE, 2013] proved to be invaluable to ex-
haustively solve the problem. Using MACROS we were able to find not only the designs with greatly improved performances

Figure 7. Pareto front projections onto various coordinate triples excludingLONG/COC and SHORT/COC objectives. Note that Pareto front

looks one-dimensional.

Figure 8. Pareto front projections onto various coordinate triples includingeither LONG/COC or SHORT/COC design variables. Note that

Pareto front looks two-dimensional.
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Figure 9. Pareto front projections onto various coordinate triples includingboth LONG/COC and SHORT/COC design variables. Note that

Pareto front looks three-dimensional.

(from 10 to 20 percent), but to investigate the fine structureof Pareto Set and Front as well. It turns out that generic dimen-
sionality of Pareto optimal variety is three, however, its embedding into design/performance criteria spaces is very peculiar:
dependence upon two parameters/criteria essentially factorizes making Pareto set effectively one-dimensional object.
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