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VEGA Workflow diagram

* Matrix X (N X p)
* MatrixY (N X q)
. . . . . . * Opti
> No need for prior selection of reduced dimensionality since data can be compressed to any selected reduced P

dimensionality without re-training the model * Removing constant rows
* Normalizing inputs
> Better accuracy compared to the state-of-the-art methods

Introduction

» Effective dimension reduction problem is considered

» VEGA algorithm is proposed, based on gaussian process regression. lts main features are:

Approximation

model * GP approximation

construction

Effective dimension reduction (EDR) problem statement

n Retrievin
» Let the data D = (X, Y) — {xiayi(xi)}izl be generated by the process gradientg * Analytically from model

y(x) = f(x) + &(x), approximation

where f(x) = g(Bx), ¢ is a random noise with Ec =0, B € R9*™ d < m, BBT = Iy, 4

: : : : : : e PCA of gradients
» The problem of Effective Dimension Reduction is to estimate S = span{B} (Central Mean Subspace, CMS)

Dimensionality
estimation

State-of-the-art methods

lterating

» Inverse regression based: SIR, SAVE
» Local linear model based: SAMM, MAVE, OPG

» PLS
M
Let y(x) be modeled as VEGA as well as a Mahalanobis distance
y(x) = f(x) + &(x), based model provides invariance towards

Mo

where f(x) is a some realization of a Gaussian Process (GP), £(x) is a gaussian white noise with a variance O'%. axes rotation. We demonstrate this on

Let us assume that the covariance function Ky(x, x’) of the gaussian field f(x) belongs to some parametric family
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where © is a some set of parameters, oy is a scale parameter of the covariance function.
In this case the covariance function of the process y(x) can be represented as

K(x,x") = Ko(x,x') + 036(x, X'),

—weightened Euclidean distance
——Mahalanobis distance

the example of Mystery function. - —vEGA
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where 6(x, x’) is a kroneker symbol
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Covariance function parameters tuning

In order to estimate parameters a = {@, 00, 01} of the covariance function usually maximum likelihood estimate Accuracy of models built for rotated axes

is used. Log-likelihood has the form Mystery function

log p(Y|X,a) = _EYTK—ly _ llog K| — i log 27 Comparison with other covariance functions
’ 2 2 2 ’
where |K] is a determinant of K = {K(x;, x;) =1 We provide comparison of techniques in terms of Mean Square Error. Dolan-More curves are drawn for a set of

Parameters a are estimated by maximizing the log-likelihood log p( Y| X, a). 30 smooth functions often used for an unconstrained optimization benchmark.
On 2D problem model based on Mahalanobis distance covariance function and VEGA works with comparable

Covariance function accuracy.

. . . . Fotated 20 problems 300 points
Here we use exponential family to model the covariance function - " i
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K()(X, X ) = 0 exp(—d(x, X )), GPMachalanohis
" _ | , _ _ _ —— VEGA iter 1
where d(x,x') is a distance between points x and x’. Usually the following metrics are considered 0.5 —— VEGA iter 5
» Weighted Euclidean distance:
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d(x,x’) = Z 05 (xi — x;)°, Dolan-moore profiles for 2D functions
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However as problems dimensionality increases models based on Mahalanobis distance covariance function starts

where §; e R,i=1,...,m _ . e e
to decrease in accuracy (already in 4D case) being inferior to other methods.

> Wlth thiS metric one has to tune m hyperparameters
Rotated OPT dim 4 problems 300 points

» Mahalanobis distance: |
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where A € R™*™ is a some positive definite matrix
> Due to positive definiteness of A Cholesky decomposition holds true

A = LTL’ 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

where L is an upper triangular matrix. Dolan-moore profiles for 4D functions

> So one has to tune m('zﬂ) hyperparameters, parameterizing the Cholesky factor L This effect is due to a considerable growth in number ~ m? of hyperparameters for Mahalanobis distance
covariance function instead of ~ m for VEGA.

VEGA (Variable Extraction via Gradient Approximation)

Comparison with different EDR techniques

> Let us define the metric as y , NTRTAR , Here using Dolan-More curves we provide a comparison with state-of-the-art EDR techniques for a number of
(%, %) = (x = x)) (x —x), test problems. In this experiment true reduced dimensionality was known beforehand.

where B is an orthogonal matrix m X m, A is a diagonal positive definite matrix m X m 1

» With this parameterization

B - rotates coordinate axes 09 Compression decompression errors

A\ - tunes kernel widthes along the axes

» To reduce dimensionality to k, with already given matrices B and A, one needs to keep k columns of B 0.8
corresponding to the largest elements of A.
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VEGA parameter estimation

o
o

With considered parameterization an approximation f(x) of f(x) can be estimated as

Fart of functions
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’A((X) = g(Bx), ——TOPG
MAVE
where g is a GP approximation (a posterior mean) with covariance based on weighted Euclidean distance. “r , ’J :;EGA
» With fixed B hyperparameters of g (diagonal matrix A) can be found by log-likelihood maximization A | _gigﬂhﬂ
» Matrix B can be explicitly found using the following considerations. Let us consider some approximation f. It
allows us to get the estimates of gradients of f as o2}
o {a?(x) Of (x) } T
Ox1 x=x;  OxM Ix=x;)i=1 | |
In this case we may align axes the way that derivatives along them would not be correlated, i.e. to find B as an 0 | | | | | | | | | |
eigenvectors of the empirical gradient covariance matrix I ' T : - e - U oErRsM h " " 2

» Also it might be beneficial to adjust A and B in an iterative manner, i.e. to find optimal A with fixed B and

_ _ Comparison of EDR techniques in terms of compress/decompress error, defined as Hf(x) —f (BTBX) H
vice-versa several time.

Conclusions

Dimensionality estimation

Method performs a principal component analysis on the covariance matrix of the gradient estimates.

» Accuracy of the proposed technique is better than the state-of-the-art effective dimension reduction approaches

» To estimate reduced dimension one may use any of standard approaches from the principal component analysis

» Model quality is robust to the rotation of coordinate axes
framework.

_ e _ _ » . _ _ » Provides natural way to extract the most sensitive directions corresponding to the highest output variations
» Also underlying probabilistic model makes it possible to develop specific statistical tests in order to estimate

. » When maximizing likelihood only m hyperparameters are needed to be tuned
consistently a number of non-zero elements of A. & y yPErp
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