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Abstract

In the present work methods for controlling smoothness
of surrogate models is proposed and justified. Such con-
trol of smoothness is important in surrogate based opti-
mization process.

1. Introduction

In [1, 2] a universal surface fitting algorithm has
been developed. The algorithm allows to construct a
surrogate model of a given full scale model, which could
be given either as a black box function or as a data
sample. In the former case the tool allows to construct
a surrogate model with a specified accuracy, in the later
case – with the best possible accuracy.

If the resulting surrogate model is to be used as ei-
ther objective function or constraint of some optimiza-
tion problem and if the gradient based method is to be
used then a question of obtaining the gradient of this
surrogate model do arises. Of course, it is desirable to
have certain smoothness properties of both surrogate
model and its gradient.

Another and much more important reason to re-
quire specific smoothness properties of surrogate mod-
els is the following. Most of engineer-level objective
functions are intrinsically noisy. The often random
noise is caused by various sources, e.g. it might be
because of finite (perhaps, rather crude) precision of
physical experiments or because of numerical modeling
flaws (non-convergence of algorithms, their finite preci-
sion etc.). Leaving aside the question of noise origin (al-
though it might be helpful to classify various sources)
one could argue that in most cases experienced engi-
neers could identify unreliable data points by analyz-
ing the history and convergence of corresponding simu-
lations supplemented with all his/her engineering wis-
dom. Therefore it is possible to rank all available data
points with a kind of reliability estimate which might
be very helpful in noise reduction technique. Indeed,
the most promising approach to reduce both the influ-
ence of noise and the number of function evaluations

seems to be the systematic exploitation of surrogate
models. The prime observation is that any surrogate
model one could construct in the vicinity of current
guess does not reproduce the original data set exactly.
Instead (depending on details of chosen model) it re-
produces some regularized approximation to the origi-
nal data reflecting the engineer’s a priori knowledge of
the model considered. Thus the art of surrogate model-
ing does not reduce to simply taking the most universal
type of approximation algorithm, in order to be useful
the surrogate model should provide the capabilities to
control the smoothness properties of the model. For in-
stance, if at engineer-level it is known that the model
response (no matter how complex its parameter depen-
dence might be) is continuous, the continuous surro-
gate model could greatly reduce the noise present in
data. To the contrary, taking more “universal” surro-
gate model supporting discontinuities of various kinds
makes no much sense with continuous but noisy objec-
tive function(s), physics is ought to be lost but noise
will be mostly preserved by surrogate model.

All the existing methods for constructing approxi-
mations are unable to obtain the simultaneous solution
of two interrelated problems – ensuring both the ac-
curacy of the model and the smoothness of the model
(except for trivial cases).

In the present work a new algorithm for construc-
tion of smoothed surrogate models has been devel-
oped. This algorithm ensures not only closeness of orig-
inal function and its approximation but also ensures
smoothness of gradient of the approximation.

Elaborated algorithm is intended for the automatic
generation of smoothed surrogate models, which can
be used to calculate approximate smooth value and ap-
proximate smooth gradient for the true values of the
characteristics and their gradient correspondingly.

The article is structured as follows:

1. Section 2 outlines the main goals and particular
details of mathematical modeling, surrogate mod-
eling, their use in design optimization and gives
the statement of the smooth surrogate modeling
problem.



2. Section 3 contains the main theoretical approaches
to filtering (smoothing) as well as description of
a filtering (smoothing) algorithm based on these
theoretical approaches and used for construction
of smoothed surrogate models.

3. Section 4 gives example of application of elabo-
rated algorithm to typical test function.

2. Problem statement

2.1. Mathematical modeling

Comparison of various technical solutions regarding
an object’s structure, parameters, operating principles
and other aspects is an essential step in any design pro-
cess. Rapid progress in mathematical modelling and
computer engineering has made it possible to inves-
tigate plenty of design alternatives with different ob-
ject configurations and parameters, predict an object’s
characteristics and find the best or most balanced so-
lutions without any full-scale experiments. Therefore,
mathematical modelling which involves series of com-
putational experiments for the investigation of analyt-
ical models of the object and its environment has be-
come one of the most common methods of analysis and
optimization of an engineering object’s structure (see
[3, 5, 6]).

Let us denote by:

• X some p-dimensional vector describing object de-
sign (for example, X is a p-dimensional description
of aircraft layout),

• Y = fM(X) some mathematical model used for cal-
culation of q-dimensional vector of an object char-
acteristics with description X . It is supposed that
the value of the function fM(X) is noiseless. In the
sequel without loss of generality let us consider the
case q = 1.

Usually the model Y = fM(X) is used in some opti-
mization process, for example, its minimum is searched.
This minimum is a candidate for optimal design. For
example, in order to find the optimal airfoil shape X
for an aircraft wing, an engineer simulates the air flow
around the wing for different shape variables (length,
curvature, material, ...) and minimize the value of the
drag coefficient fM(X), i.e. search for p-dimensional

X0 = argmin
X∈X

fM(X), (1)

where X is a design space. Design space can also be
defined as X = {X : g(X) ≤ 0} for some vector function
g(X). The most widely used method for solution of
this problem consists of two phases (probably, repeated
iteratively) and can be described as follows:

• Phase during which local minimum of fM(X) is ob-
tained (LM-phase).

• Phase during which transition to a search for an-
other local minimum is done in order to find global
minimum (GM-phase).

During the LM-phase a sequence of points
X1,X2,X3, . . . is constructed such that fM(X1) > fM(X2) >
fM(X3) > .. . and {Xi, i = 1,2, . . .} converges to the local
minimum X0 (the construction process is stopped when
the decrease of fM(X) is stopped). It is obvious that for
some intermediate point Xk we should be able to find
new value Xk+1 with smaller value of the response func-
tion fM(X). Using theory of optimization we get that if
f ′M(Xk) is a non-zero value of the gradient of the func-
tion fM(X) for X = Xk, then there exists such number
T (Xk) > 0 that

fM(Xk + t f ′M(Xk)) < fM(Xk) (2)

for 0 < t < T (Xk). Thus during the LM-phase we should

• define multidimensional direction e(Xk) of decrease
of the function fM(X) (for example, using the gra-
dient, i.e. e(Xk) = f ′M(Xk)),

• define t ∈ (0,T (Xk)) such that for Xk+1 = Xk +
t f ′M(Xk) the value of fM(Xk+1) is the smallest pos-
sible.

Even if some additional functional constraints
g(X) ≤ 0 should be taken into account during the op-
timization then the general scheme given above is not
changed, only some additional restrictions are imposed
on selected multidimensional direction e(Xk).

Thus in order to accomplish LM-phase we should
be able to calculate the gradient L( fM)(X) = f ′M(X) for
the function fM(X). In case there is no explicit formulae
for the gradient L( fM) numerical approximation of the
functional L( fM) is evaluated using another functional
Ls( fM) depending on the finite number n(s) of the values
of fM(X), such that

Ls( fM)→ L( fM) (3)

for s → 0. In particular, for the case of L( fM)(X) =
f ′M(X) the following functional is used as Ls( fM)

Ls( fM) = ( fM(X + s)− fM(X))/s. (4)

At the same time when using (4) it is taken into
account that all calculations (computation of the func-
tion fM(X) value, division operation, etc.) are done
with some finite accuracy (for example, due to finite
digit capacity of the computer). In particular, this fact
defines the choice of the parameter s.



2.2. Surrogate Modeling

Traditionally, mathematical model Y = fM(X) is
based on “process physics” and describes physical pro-
cesses and phenomena occurring in the course of an
object’s operation by complex partial differential equa-
tions with boundary conditions, for which in most cases
nothing is known either about the theorems of existence
or uniqueness of the solution or the dependence of the
solution from the parameters or boundary conditions.
These equations are solved using complicated numerical
methods that require significant computing resources
and a lot of effort for preparing input data and compu-
tational meshes. Thus model based on process physics
has a limited scope of application, especially at the early
(conceptual) design phase where a lot of various de-
sign alternatives have to be considered and making the
wrong choice can have far-reaching consequences.

One way of alleviating this burden is by construct-
ing approximation models, known as surrogate models
or metamodels, that mimic the behavior of the simu-
lation model as closely as possible while being compu-
tationally cheaper to evaluate (see [3, 5, 6]). Surrogate
models are constructed using a data-driven, bottom-up
approach. The exact, inner working of the simulation
code is not assumed to be known (or even understood),
solely the input-output behavior is important. A model
is constructed based on modeling the response of the
simulator using a limited number of intelligently cho-
sen data points of expensive experiments and/or simu-
lations, i.e. using some training sample

Strain = {Xi,Yi = fM(Xi), i = 1, . . . ,N} (5)

such function (surrogate model) fSM(X) is constructed
that

fSM(X)≈ fM(X). (6)
The surrogate model fSM(X) is cheap to evaluate,

so it is used in optimization process instead of the initial
function fM(X) to predict designs with promising per-
formance. The remaining budget of expensive experi-
ments/simulations are run for these candidate designs
to check them. The process usually takes the form of
the following search/update procedure:

1. Initial sample Strain is constructed.

2. Initial surrogate model fSM(X) is constructed.

3. Constructed surrogate model fSM(X) is used in op-
timization process, for example, its minimum is
searched. Obtained solution of the optimization
problem is a candidate for optimal design.

4. Experiments/simulations are done at new loca-
tion(s) found during the previous step and added
to the existing sample Strain.

5. Steps 2 to 4 are iterated until out of time or “good
enough” design is found.

2.3. Surrogate model for the gradient

In order to obtain accurate candidates (for optimal
design) as a solution of the corresponding optimization
problem (see Step 3 in the previous section) we should
provide

• the maximal possible accuracy fSM(X) ≈ fM(X)
necessary for replacement of the model fM(X) by
the surrogate model fSM(X),

• the surrogate model ( f ′M(X))SM for the gradient
f ′M(X) necessary for accomplishment of LM-phase
(see Step 3 in the previous section), such that
( f ′M(X))SM ≈ f ′M(X).

Suppose that we can obtain both the value of the
model fM(X) and the value of its gradient f ′M(X), i.e.
for each input vector X we can calculate the vector
( fM(X), f ′M(X)). Thus, using the extended training sam-
ple

S∗train = {Xi,(Yi = fM(Xi),Y ′i = f ′M(Xi)), i = 1, . . . ,N}, (7)

we can construct the surrogate model f ∗SM(X) with vec-
tor output ( fSM(X),( f ′M(X))SM), where the first com-
ponent fSM(X) approximates the model fM(X) and the
second component ( f ′M(X))SM approximates the gradi-
ent f ′M(X) of the model (this means that we use the
Sobolev norm to measure the error of approximation).
However if the value of the gradient f ′M(X) is unknown
then we simply do not have data for construction of
such extended surrogate model f ∗SM(X) (there is no data
about the object for which we want to construct a sur-
rogate model).

Numerical estimation of the gradient (calculation of
finite differences) for construction of extended sample
(7) is rather problematic. Finite differences (4) can have
satisfactory quality only for small values of all compo-
nents of the vector s. Such requirement is almost im-
possible to fulfill in multidimensional case due to high
sparseness of the input space. Even if we can generate
new data then numerical estimation of the gradient is
very computationally intensive. Moreover, numerically
estimated gradient is rather noisy since it highly de-
pends on the parameters of the used numerical method.

Thus in general we are not able to construct a sur-
rogate model ( f ′M(X))SM for the gradient f ′M(X) and the
only source of information about the function fM(X)
and its gradient f ′M(X) is the available surrogate model
fSM(X).

Let us consider more thoroughly how fSM(X) is re-
lated to fM(X). The surrogate model fSM(X) is consid-
ered to be good when there is no dependency between
residuals fSM(X)− fM(X) for close input points (oth-
erwise subsequent improvement of the accuracy of the
surrogate model fSM(X) is possible), i.e. in the limit
the residuals fSM(X)− fM(X) behaves like white noise.
Thus



• the surrogate model fSM(X) can be represented at
least approximately as

fSM(X) = fM(X)+ ε(X), (8)

where ε(X) are residuals of the surrogate model;

• we consider fM(X) to be rather smooth function
without noise since the function fM(X) represents
some real physical process;

• the error ε(X) of the surrogate model is considered
to be small compared to the value of fM(X) (oth-
erwise the surrogate model fSM(X) is considered to
have low accuracy and should not be used in opti-
mization process);

• ε(X) is modeled (at least approximately) by some
random process with zero mean, being uncorre-
lated or having some dependence structure.

Rather often engineer-level models are intrinsically
noisy. Usually random noise is caused by various
sources, e.g. it might be because of finite (perhaps,
rather crude) precision of physical experiments or be-
cause of numerical modeling flaws (non-convergence of
algorithms, their finite precision etc.). In such case the
sample Strain = {Xi,Yi, i = 1, . . . ,N} will contain such ran-
dom noise, i.e. Yi = fM(Xi) + δi, i = 1, . . . ,N, for some
random noise process δ . In such case in (8) we consider
the function fM(X) to be an ideal unknown function
without noise, representing true physical process. Thus
the source of the error term ε(X) can be not only the
discrepancy between the surrogate model fSM(X) and
the initial model fM(X) (appeared due to the finite size
of the sample Strain), but also some intrinsic noise pre-
sented in the sample Strain.

Model (8) means that we estimate the value of the
function fM(X) with a random error, i.e. for the same
input X we can obtain measurements with different val-
ues of the error ε(X). Thus the function fM(X) can be
considered as a trend and the error ε(X) can be con-
sidered as a diffusion. In general the error term ε(X)
cannot be reduced to zero by the increase of calculation
accuracy (for example by means of increase of sample
size or by increase of computer digit capacity).

Let us now consider more thoroughly how the gra-
dient f ′SM(X) of fSM(X) is related to the gradient f ′M(X)
of fM(X). Given the model (8) the problem of the gra-
dient f ′M(X) estimation is reduced to the estimation
of the functional L( fM)(X) = f ′M(X) using “noisy” data
fSM(X). Due to the noise term ε(X) in (8) convergence
of the estimate to the true value should be considered
in the mean square sense in contrast to the usual deter-
ministic convergence in (3). Thus we should construct
the functional Ls( fM) depending on the finite number
n(s) of the noisy values of fSM(X), such that

E(Ls( fSM)−L( fM))2 → 0 (9)

for s → 0, where E denotes mathematical expectation
with respect to the probability law of ε(X) and dis-
tribution of the input vector X (for example, if the
input domain is bounded then we can consider uni-
form distribution as such distribution of input vector
X). Usual procedure based on finite differences (4) can-
not be used for estimation of the gradient, since it is
designed for noise-free case. Actually, for Ls( fSM) =
( fSM(X + s)− fSM(X))/s it can be easily proved that for
s→ 0

E(Ls( fSM)−L( fM))2 =(s2 · f ′′M(X∗))/2+

(Var(ε(X + s)− ε(X)))/s2, (10)

where Var denotes variance with respect to the proba-
bility law of ε(X) and distribution of the input vector
X , X∗ is a some point belonging to the segment with
endpoints X and X + s. For the most of standard situa-
tions (measurements are independent or the noise ε(X)
is white etc.) even if the variance Var(ε(X + s)− ε(X))
tends to zero, it’s convergence rate is not faster than
O(s). Thus calculation of the gradient using finite dif-
ferences applied to fSM(X) is prohibitive for the case of
noisy function, since E(Ls( fSM)−L( fM))2 →∞ for s→ 0.

2.4. Optimization of the surrogate model

Due to the representation (8) the typical examples
of the surrogate model behavior can be described as
follows:

(1) significantly varied “saw-toothed” regions corre-
sponding to a big number of close local minima
with similar values of the response function fSM(X)
(at the same time teeth of the saw can be suffi-
ciently blunt to ensure the existence of the gradi-
ent).

(2) significantly varied “flat” segments corresponding
to a big number of close “continuous” local minima
with similar values of the response function fSM(X)
(at the same time flat segments can be smoothly
joined in order to ensure the existence of the gra-
dient). This is precisely the behavior of some local
methods (for example, k-nearest neighbor method
from modeFrontier [7]).

General optimization algorithms used for accom-
plishment of the LM-phase (see Step 3 in the sec-
tion 2.2) are usually designed for rather complex but
though rather “good” functions. By “good” functions
here we mean functions with either one minimum or
several minima located sufficiently distant from each
other. Moreover, often these minima correspond to sig-
nificantly different output values of the response func-
tion. Thus typical all-purpose optimization algorithms
are not very well tailored for optimization of surrogate
models, since for example



• In (1) (see above) even for precise value of the gra-
dient e(X) = f ′SM(X) the value of T (X) (see (2))
will be very small, resulting in small optimization
steps. Thus effectiveness of LM-phase will be de-
creased and GM-phase (see section 2.1) will be-
come incredibly difficult.

• In (2) the gradient will be zero and optimization
algorithm will not work.

Thus the gradient f ′SM(X) has “bad” behavior and can
significantly differ from the gradient f ′M(X) (see also
section 2.3 for details), so optimization of the surrogate
model fSM(X) “as is” using the gradient f ′SM(X) and typ-
ical all-purpose optimization algorithms is complicated
and can lead to inaccurate candidates for optimal de-
sign.

2.5. Statement of the smooth high dimen-
sional approximation problem

As it follows from the previous sections it is natural
to consider the surrogate model fSM(X) to be analogue
of the noisy model (8) producing noisy data fSM(X) with
trend fM(X) and diffusion ε(X).

The main problem of noisy data analysis is the so-
called filtering (de noising) problem consisting in es-
timation of various characteristics of the trend fM(X)
(output values for particular input values, behavior of
fM(X) for changing input vector X , described by the
gradient f ′M(X), etc.) using noisy data (8) (see for de-
tails [8, 4]).

Thus relying only on “noisy” data fSM(X) we can
consider only the problem of trend fM(X) estimation
(including trend estimation for the gradient f ′M(X)).
At the same time exactly the initial data is smoothed
rather than values of non-robust functions of the initial
data (for example, numerical estimates of the gradient
are non-robust functions of the initial data, i.e. they
can produce huge estimation errors especially in multi-
dimensional case).

Therefore in order to construct the object for sur-
rogate modeling (of the gradient in the considered case)
it is necessary to use filtering (for the initial model
fSM(X)) and state the problem of surrogate model con-
struction for the trend (smoothed function).

Thus the statement of the smooth high dimensional
approximation problem is the following:

1. Surrogate model fSM(X) is intended for the most
possible precise approximation of the initial model
fM(X) and the more accurate the surrogate model
fSM(X) reproduces the initial model fM(X) the bet-
ter it is considered to be.

2. Problems of surrogate model construction for the
gradient f ′M(X), optimization of the initial model

fM(X) etc. should be considered if not only point-
wise prediction of the values of the initial model
fM(X) should be obtained but also its behavior for
changing input vector X (characteristics of the vari-
ation of fM(X) along different directions of the in-
put vector X , minimum point of fM(X) etc.) should
be investigated.

3. Since the values of the initial function fM(X) are
known only for some finite set of input vectors X
then well-posed problem statement of the gradient
estimation f ′M(X) can be set only for the smoothed
surrogate model. In particular, the problem of the
gradient estimation consists in estimation of the
gradient of the trend fM(X) (see (8)) obtained by
its filtration from the noisy data fSM(X).

4. The function fSM(X) should be smoothed (the
trend should be estimated) in order to facilitate
optimization. The gradient of the trend should be
used in order to accomplish LM-phase of the op-
timization process and obtain accurate candidates
for optimal design (see the section 2.2).

5. Let us denote by

• fSM,s(X) the estimate of the trend fM(X), ob-
tained by filtering of fSM(X), where s de-
notes some smoothing parameter ( fSM,s(X)
is a smoothed/de-noised surrogate model).
Smoothing parameter s can be interpreted, for
example, as the size of the neighborhood of
the given input point X , over which the out-
put of fSM(X) is averaged in order to obtain
the value fSM,s(X).

• L( fSM,s)(X) = f ′SM,s(X) and L( fSM)(X) =
f ′SM(X) the gradients of fSM,s(X) and fSM(X)
correspondingly. Suppose that the model
(8) holds true, the function fM(X) is smooth
enough (at least fM(X) has finite second
derivatives), then the estimate fSM,s(X)
should have the following asymptotical
properties:

E( fSM,s− fM)2 → 0, (11)

E(L( fSM,s)−L( fM))2 → 0, (12)

for s→ 0.

Remark. It is natural to obtain accurate candi-
dates (for optimal design) as a solution of the corre-
sponding optimization problem (see Step 3 in the sec-
tion 2.2) using filtered (smoothed) surrogate model:

1. Filtered (smoothed) surrogate model fSM,s(X) and
its gradient f ′SM,s(X) are used in optimization pro-
cess. Since the function fSM,s(X) has “good” behav-
ior (opposed to the initial surrogate model fSM(X),



see section 2.4) then reasonable local minima can
be found.

2. Using the initial surrogate model fSM(X) local op-
timization is done in the vicinity of local minima
obtained during the previous step. This step is
necessary in order to refine candidate designs.

3. Smoothing of Surrogate Model

According to the results of the previous section
Smoothing of Surrogate Model is reduced to filtering
(de-noising) of the trend fM(X) and its gradient f ′M(X)
from noisy data fSM(X), generated by the model (8). In
the present section we are going to present theory and
algorithms used for solution of this filtering problem.

3.1. Filtering: theoretical considerations

In order to estimate the trend fM(X) the following
operator is used

fSM,s(X) =
∫

Ks(Z−X) fSM(Z)dFs(Z), (13)

where Ks(X) is a scaled kernel function, Fs is a mea-
sure concentrated in a finite number of available input
points. Usually scaled kernel function Ks(X) is con-
structed as a scaling of specific kernel function K(X) =
K(x1, ...,xp), X = (x1, ...,xp) (formula (28) below gives an
example of such kernel function K(X)) according to the
formula

Ks(X) =
1

∏p
k=1 hk(s)

K (x1/h1(s), . . . ,xp/hp(s)) , (14)

where hk(s) = s · sk, k = 1, . . . , p define kernel width and
sk is a standard deviation of the k-th coordinate of the
input vector X . Usually in practice sk is estimated using
the sample Strain (5).

It is assumed that for s → 0 the measure Fs con-
verges (in the weak sense after possible normalization)
to some measure F determined by the design of exper-
iment (for example, F is a uniform distribution).

Example. If rectangular window is used as a
kernel (with width tending to zero when s → 0) and
Fs is a counting measure then the results of filtering
take the form fSM,s(X) = ∑i Ks(Xi − X) fSM(Xi), where
{Xi, i = 1,2, . . . ,N} is a some set of inputs.

It is obvious that

fSM,s(X) =
∫

Ks(Z−X) fM(Z)dFs(Z)+
∫

Ks(Z−X)ε(Z)dFs(Z). (15)

The first term in (15) defines the bias

bs(X) =
∫

Ks(Z−X) fM(Z)dF(Z)− fM(X). (16)

Sometimes for the given class of functions fM(X)
such kernels can be constructed that the bias (16) is ex-
actly zero (class of functions with reproducing kernel).
Small wonder that such kernels depend on unknown
function fM(X) being estimated. In general case

bs(X) =
∫

Ks(Z) fM(X +Z)dF(Z)− fM(X)

= fM(X) · (
∫

Ks(Z)dF(Z)−1)+

f ′M(X) ·
∫

Ks(Z)ZdF(Z)+

( f ′′M(X)/2) ·
(∫

Ks(Z)Z2dF(Z)
)

+ . . . . (17)

From (17) the following natural requirements to kernel
functions follows:

∫
Ks(Z)dF(Z) = 1, (18)

∫
Ks(Z)Z jdF(Z) = 0, j = 1,2, . . . ,m, (19)

where m ≥ 1 is a given number. Moreover, the kernel
should provide convergence to zero (in some probabilis-
tic sense) of the random term

∫
Ks(Z − X)ε(Z)dFs(Z)

for s → 0. In such case the function fSM,s(X) provides
consistent estimate of the trend fM(X) and fulfills the
requirement (11).

As it follows from the results of section 2.3 (see
(10)) we cannot use the functional (4) applied to the
observed function fSM(X) in order to estimate the trend.
Also we cannot use the functional (4) applied to the
filtered function fSM,s(X) (15) in order to estimate the
trend. The thing is that in practice we consider only
finite values of s and even the filtered function fSM,s(X)
will contain noise

∫
Ks(Z−X)ε(Z)dFs(Z). According to

the results of section 2.3 (see (10)) this noise will result
in inconsistent estimate of the gradient.

However based on the structure (15) of the filtered
function we can estimate the gradient of the filtered
function fSM,s(X) (13). In fact this is the main purpose
of the filtration rather than point-wise estimation of
trend values, since the differentiability of the function
fSM,s(X) (13) depends on the smoothness of the kernel
Ks. Differentiating, we obtain that

f ′SM,s(X) =
(∫

Ks(Z−X) fM(Z)dFs(Z)+

∫
Ks(X −Z)ε(Z)dFs(Z)

)′
=

∫
Ks(Z) f ′M(X +Z)dFs(Z)+

∫
K′

s(X −Z)ε(Z)dFs(Z) = f ′M(X)
∫

Ks(Z)dFs(Z)+

f ′′M(X)
∫

Ks(Z)ZdFs(Z)+( f ′′′M (X)/2)
∫

Ks(Z)Z2dFs(Z)

+ . . .+
∫

K′
s(X−Z)ε(Z)dFs(Z). (20)



Since the measure Fs weakly converges to some
measure F for s→ 0 and requirements (18), (19) to the
kernel Ks are fulfilled then

f ′SM,s(X)≈ f ′M(X)+
∫

K′
s(X−Z)ε(Z)dFs(Z). (21)

Usually such kernel Ks(X) is considered that not
only

∫
Ks(X −Z)ε(Z)dFs(Z) converges to zero for s→ 0

(necessary for point-wise convergence of the estimate
to the real trend) but also

∫
K( j)

s (X − Z)ε(Z)dFs(Z) →
0, j = 1, . . . ,m (in probabilistic sense) for s → 0. Such
additional requirements ensure that functions

fSM,s( j)(X) =
∫

K( j)
s (X−Z) fSM(Z)dFs(Z) (22)

for j = 1, . . . ,m provide consistent estimates of deriva-
tives f ( j)

M (X), j = 1,2, . . . ,m and fulfill the requirement
(12). Thus the functions fSM,s( j)(X), j = 1,2, . . . ,m can
be considered as the surrogate models for the deriva-
tives of the trend fM(X).

If the model (8) does not contain noise ε(X)
(the surrogate model fSM(X) is absolutely exact, i.e.
fSM(X) = fM(X)) then the error of the filtration is de-
termined only by the bias (16) which can be easily
controlled. Filtration applied to already smooth func-
tion will not significantly distort such smooth function.
Thus when estimating gradient it is reasonable to use
preliminary smoothing in any case, since among other
things such smoothing reduces errors of numerical cal-
culations.

Therefore in order to estimate the trend fM(X) and
its derivatives up to the m-th order the functions

fSM,s( j)(X) =
∫

K( j)
s (X−Z) fSM(Z)dFs(Z) (23)

for j = 1, . . . ,m should be used and smoothing of the
surrogate model is realized by the functions (23) for
m = 1.

Remark. It can be seen that for all j in (23)
weighted sums of the values of the same model are con-
sidered, namely

• the values of the initial model fM(X) (in case the
surrogate model fSM(X) is constructed using local
methods), or

• the values of the constructed surrogate model
fSM(X) in other cases.

The measure Fs is concentrated on these values in all
cases.

Optimal width s of the scaled kernel Ks(X) is ob-
tained as a solution of the following optimization prob-
lem

sopt = argmin
s>0
E( fSM,s(0)− fM)2, (24)

where fSM,s(0)(X) is defined by the formula (23) and
fM(X) is an initial unknown model (trend), see (8).

Example. If Fs is a counting measure concentrated
on the points {Xi, i = 1,2, . . . ,N} ∈ Strain and the distri-
bution of the input vector X is uniform in some bounded
domain then it can be proved that asymptotically for
s→ 0, Nsp → ∞ (see [8, 4])

sopt ≈ (C1 · p/4C2 ·N)1/(p+4) , (25)

where

C1 = ‖K‖2
2

∫
σ2(X)dX/

p

∏
j=1

s j, (26)

C2 = (µ2(K))2
∫

(Tr(X))2dX/4, (27)

σ2(X) is a variance of the noise term ε(X) in (8),
Tr(X) = tr

(
σT ·Hp(X) ·σ)

, σ = diag(s1, . . . ,sp), Hp(X) =(
∂ 2 fM(X)
∂ xi∂x j

)p

i, j=1
, tr(·) is a trace of the given ma-

trix, ‖K‖2
2 =

∫
K2(X)dX , µ2(X) is a such number

that
∫

uuTK(u)du = µ2(K)Ip with u =




u1
. . .
up


 , and

identity matrix Ip ∈ Rp×p. For such optimal pa-
rameter sopt the mean integrated square error is

equal to E
(

fSM,sopt (0)− fM

)2
= N−4/(p+4) · (C1)4/(p+4) ·

(C2)p/(p+4) · {(p/4)−p/(p+4) +(p/4)4/(p+4)}. Thus when
we increase the sample size for s = sopt(N, p) the er-
ror of approximation decreases as ∼ N−4/(p+4). So, if
we want the error of filtering to be E then the size of
the sample should be equal to Nopt ≈ (C(p)/E)p/4+1,
where C(p) = (C1)4/(p+4) · (C2)p/(p+4) · {(p/4)−p/(p+4) +
(p/4)4/(p+4)}. Therefore the optimal size Nopt of the
sample depends on the integrated variance of the noise
and integrated trace of the squared scaled Hessian of
the unknown function fM(X).

3.2. Filtering: algorithmic considerations

According to the results of the previous section in
order to smooth surrogate model the following things
should be specified:

1. Kernel function K(X) for use in (23).

2. Algorithm for selection of the optimal (in the sense
of the criterion (11)) width s of the kernel Ks(X).

3. Algorithm for efficient evaluation of the integral in
(23). Usually input vector X has dimension greater
than one, so the algorithm should be scalable and
weakly dependent on the dimension of input vector
X .

Let us consider these issues more thoroughly. It is pro-
posed to use so-called Epanechnikov kernel function as



a kernel function K(X)

K(X) =

(
1−

p

∑
k=1

x2
k

)
I

(
p

∑
k=1

x2
k ≤ 1

)
Γ(p/2+2)/π p/2,

(28)
where X = (x1, . . . ,xp), Γ(z) =

∫ +∞
0 tz−1e−tdt is a gamma-

function, I(A) is an indicator function of the event A.
This kernel was chosen because of its compact support
and optimality in a minimum variance sense ([8, 4]).
Used scaled version Ks(X) of the Epanechnikov kernel
has the form

Ks(X) =
Γ(p/2+2)(

π p/2 ∏p
k hk(s)

)
(

1−
p

∑
k=1

x2
k/h2

k(s)

)
×

I

(
p

∑
k=1

x2
k/h2

k(s)≤ 1

)
(29)

Optimal width s of the kernel Ks(X) is selected on
basis of formulas (25), (26) and (27). For application of
these formulas initial estimates of the unknown function
fM(X) and its derivatives are necessary. Such initial
estimates are obtained by the same formulas (23) with
kernel width estimated by the formula of Bowman and
Azzalini ([8, 4]). Efficient numerical algorithms were
developed for estimation of C1 and C2 in (26), (27).

Usually surrogate model fSM(X) has the form (see,
for example, [3, 1])

fSM(X) =
d

∑
i=1

Vi ·ψi(X), (30)

where {ψi(X)}d
i=1 are adaptive basis functions (squared

anisotropic Gaussian functions, generalized sigmoid-
type functions, multivariate adaptive regression spines
etc.) tuned to particular training sample Strain (5)
by the learning algorithm implemented for example in
[1, 2]. For such structure of the surrogate model the
formula (23) takes the form

fSM,s( j) =
d

∑
i=1

Vi ·Ki, j(s,X), j = 0,1, . . . ,m, (31)

where

Ki, j(s,X) =
∫

K( j)
s (X−Z)ψi(X)dFs(Z), (32)

i = 1, . . . ,d, j = 0,1, . . . ,m.

In most cases adaptive basis functions has spe-
cific structure. For example, multivariate generalized
sigmoid-type function can be represented as ψi(X) =
σ(γT

i · X), where γT
i = (γ1, . . . ,γp) is a some direction,

and σ(·) is a one-dimensional generalized sigmoid-type
function. Due to this fact multivariate integrals in (32)
can be reduced to one- or two-dimensional integrals.
Efficient numerical routines can be developed for their

calculation based on conventional approaches to numer-
ical integration.

Let us describe how the already constructed surro-
gate model can be smoothed. Algorithm for construc-
tion of smoothed surrogate models takes as input data
set of N×(p+q) matrix consisting of N rows where each
row is (p + q)-dimensional vector. Each vector is com-
posed of p-dimensional numerical (digital) description
of some object X and q-dimensional value of the char-
acteristics Y = fM(X) for input X . As output algorithm
returns the functions (23) for m = 1. These functions
are constructed as follows:

1. Using the training sample Strain (5) and an algo-
rithm for construction of approximation, for ex-
ample, the one described in [1, 2], the surrogate
model fSM(X) is constructed.

2. Using the surrogate model fSM(X) and the training
sample Strain (5) the optimal width sopt of the kernel
Ks(X) (25) is estimated as described above.

3. The following parameters are passed to the filtering
(smoothing) algorithm:

a. Parameters of the surrogate model fSM(X).

b. Parameters of the optimal kernel width,
namely the vector

Hopt = [h1(sopt), . . . ,hp(sopt)] .

and the smoothed version of the constructed surrogate
model is obtained as described above.

Let us denote by α ∈ [0,1) the parameter used for
controlling the smoothness of the surrogate model. The
approximate smooth value fSM,s(X |α) and approximate
smooth gradient f ′SM,s(X |α) for the given values of p-
dimensional numerical (digital) description of some ob-
ject X , and given value of the parameter α ∈ [0,1) can
be calculated as follows:

1. The vector H = H(α) is calculated by the formula

H(α) = α/(1−α) ·Hopt ,α ∈ [0,1). (33)

In the sequel this vector is used as a width of
the scaled kernel Ks(X) (29). It can be seen that
H(α) = Hopt for α = 1/2, i.e. the smoothing will be
optimal. In case α ∈ [0,1/2) we will undersmooth
the surrogate model fSM(X) and its gradient and in
case α ∈ (1/2,1) we will oversmooth the approxi-
mation fSM(X) and its gradient. In the limit α → 0
the scaled kernel Ks(X) (29) with such width H(α)
will converge to the delta-function, i.e. in (23) we
will get equality fSM,s( j)(X) = fSM(X), j = 0,1, . . . ,m.

2. The values of fSM,s(0)(X) and fSM,s(1)(X) are cal-
culated according to the formulas (23), (30), (31)



Figure 1. Initial function fM(X).

and (32) using the kernel width equal to H(α). Ob-
tained values are outputted as approximate smooth
value fSM,s(X |α) and approximate smooth gradient
f ′SM,s(X |α) correspondingly.

4. Example of Application

In the present subsection an example of surrogate
model smoothing is given. Plots of the following func-
tions are constructed:

1. Initial function fM(X) (figure 1);

2. Surrogate model fSM(X) (figure 2);

3. Smoothed surrogate model fSM,s(X |α), obtained
with α = 0.8 (figure 2);

4. Derivative ∂ fSM(X)
∂x1

, X = (x1,x2) (figure 4);

5. Smoothed derivative ∂ fSM,s(X |α)
∂x1

, X = (x1,x2), ob-
tained with α = 0.8 (figure 5);

6. Derivative ∂ fSM(X)
∂x2

, X = (x1,x2) (figure 6);

7. Smoothed derivative ∂ fSM,s(X |α)
∂x2

, X = (x1,x2), ob-
tained with α = 0.8 (figure 7);

It can be seen from these figures that proposed ap-
proach allows constructing smoothed surrogate models
which facilitates surrogate based optimization.

5. Conclusions

In order to perform surrogate based optimization
methods for controlling smoothness of surrogate mod-
els should be elaborated. In the present work a new
algorithm for construction of smoothed surrogate mod-
els has been developed. This algorithm ensures not only

Figure 2. Surrogate model fSM(X).

Figure 3. Smoothed surrogate model fSM,s(X |α), ob-
tained with α = 0.8.

closeness of original function and the corresponding sur-
rogate model but also ensures smoothness of gradient
of the surrogate model which is important for surrogate
based optimization.
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