
APPROXIMATION OF A MULTIDIMENSIONAL DEPENDENCY
BASED ON A LINEAR EXPANSION IN A DICTIONARY OF

PARAMETRIC FUNCTIONS∗

M.G. Belyaev1, E.V. Burnaev2

Abstract. We consider the problem of a multidimensional function approximation using
a finite set of pairs “point”—“function value at this point”. As a model for the function
we use expansion in a dictionary containing non-linear parametric functions. Several
sub-problems should be solve when constructing an approximation based on such model:
extraction of a validation sample, initialization of parameters of the functions from the
dictionary, tuning of these parameters. We propose efficient methods for solving these
sub-problems. Efficiency of the proposed approach is demonstrated on some problems of
engineering design.

Keywords: nonlinear approximation, parametric dictionaries.

1 Introduction

For engineering design we need to model complex physical phenomena. Typically used
models are represented by complex systems of differential equations. Such systems do not
have analytical solutions, so computationally heavy numerical methods are used. One
approach to solving problems of engineering design, actively developing in recent years,
is the surrogate modelling [1, 2]. In this approach a complex physical phenomenon is
described by a simplified (surrogate) model constructed using data mining techniques
and a set of examples, representing results of a detailed physical modelling and/or real
experiments. The problem of approximation of a multidimensional function using a finite
set of pairs “point”—“value of the function at this point” is one of the main problems to
be solved in the construction of the surrogate model. We will consider this problem in
the following formulation:

Problem 1 Let f (~x) ∈ R1 be some continuous function on a compact set D ⊂ Rd with

known output values in a finite set of input points. The set Slearning = {~xi, yi}
Nlearning

i=1 , ~xi ∈
D, yi = f (~xi) forms the learning sample. The approximation problem is to construct an
approximation f̂ (~x) (approximator) of the function f (~x) using the given data sample
Slearning such that f (~x) ≈ f̂ (~x) for all ~x ∈ D.

∗The authors are partially supported by Laboratory for Structural Methods of Data Analysis in Pre-
dictive Modeling, MIPT, RF government grant, ag. 11.G34.31.0073; RFBR grant 13-01-00521. Results,
described in this work, were obtained in the framework of “COPTI-X: Surrogate Model Construction for
Structure Approximation and Optimization” joint project with Airbus Operations SAS.

1Institute for Information Transmission Problems RAS, Moscow Institute of Physics and Technology,
Datadvance LLC, belyaev@iitp.ru

2Institute for Information Transmission Problems RAS, Moscow Institute of Physics and Technology,
Datadvance LLC, burnaev@iitp.ru

1



Remark 1 In general case values of the function f (~x) are known only for the finite set
of input points, so the proximity f (~x) ≈ f̂ (~x) is usually measured be the mean square error

Q
(
Stest, f̂

)
= 1

Ntest

∑Ntest

i=1

(
yi − f̂ (~xi)

)2

calculated using an independent test data sample

Stest = {~xi, yi}Ntest
i=1 , ~xi ∈ D, yi = f (~xi). The criterion Q

(
Stest, f̂

)
of approximation

quality makes sense if input vectors from the samples Slearning and Stest are generated
by the same distribution and cover the design space D sufficiently densely. We call the

function Q
(
S, f̂

)
for some set S of pairs “point”—“value of the function at this point”

as error function on the set S.

Due to requirements of surrogate modelling problems (in particular, the need to build
quickly computable global approximation model and to work with large data samples) the
most common method of solving approximation problems is based on Artificial Neural
Networks (ANN) [3]. An approximation based on the ANN model provides high-speed
calculations of output predictions. The ANN model can be easily “extended” by increas-
ing number of layers and/or their sizes as the learning sample size increases while the
computational complexity of the approximation model construction grows only linearly.

A typical scheme of approximation construction based on the ANN model can be
divided into two phases: an initialization phase (setting the initial values of the model
parameters and extraction of the validation sample) and a training phase (tuning the
ANN parameters to fit the data sample). Usually random methods are used during the
initialization phase. Such methods lead to a large scatter of the approximation accuracy.
Surrogate models are constructed to replace computationally heavy objective functions
(and/or constraints) in optimization problems, see the paper [4]. Engineering design based
on surrogate models is iterative: after finding the optimum of the objective function (sur-
rogate model) in the neighbourhood of the optimum additional pairs “point”—“value of
the function at the point” are generated, the surrogate model is re-constructed, and then
the model is optimized, etc. Therefore unpredictable significant changes in the surro-
gate model structure and significant variations of the approximation accuracy deteriorate
surrogate based optimization.

This paper investigates methods for constructing approximations based on the linear
expansion in nonlinear functions from the parametric dictionary (ANN model with one
hidden layer). We propose methods for initialization and training that reduce the average
approximation error and its variations. Let us describe the structure of the paper.

The model based on a linear expansion in a dictionary of parametric functions is de-
scribed in Section 2.1, main steps of the approximation construction based on this model
are described in Section 2.2. The next few sections are devoted to various sub-problems
that arise when constructing an approximation using the proposed algorithm. In section
3 we consider sub-problems of the initialization step of the approximation construction
algorithm. In sub-section 3.1 we describe a new algorithm for the validation sample extrac-
tion such that points from the validation sample are distributed as uniformly as possible
among the remaining points of the learning sample. We propose a computationally ef-
ficient deterministic algorithm for the validation sample extraction based on the greedy
optimization of some uniformity criterion. In sub-section 3.2 we describe a new algorithm
for the initialization of functions from the parametric dictionary. In section 4 we consider
a new training algorithm. In sub-section 4.1 we propose a special form of the error func-
tion, which takes into account the structure of the approximation error dependence on

2



different groups of parameters and includes adaptive regularization. In sub-section 4.2 we
describe a new method for the regularization parameter selection. Each of sections 3 and
4 contains results of the computational experiments on artificial functions. Experimental
results for some engineering design problems are described in section 5.

2 Algorithm for approximation construction

2.1 Model based on a linear expansion in a dictionary of para-
metric functions

We model the approximation f̂ (~x) by the linear expansion in a dictionary of parametric

functions, i.e., f̂ (~x) =
∑p

j=1 αjψj

(
~θj, ~x

)
+α0. Let us re-write this expression in a matrix

form f̂ (~x) = ~ψ (Θ, ~x) ~α, where we denote vectors by caps with vector signs and matrices

by caps (~α = {αj}pj=0, Θ = {~θj}pj=1). The row-vector ~ψ (Θ, ~x) consists of dictionary
functions values at the point ~x (ψ0 ≡ 1 corresponds to α0). Therefore the approximator
f̂ (~x) is defined by the matrix Θ of the dictionary functions parameters and by the vector
~α of the linear combination coefficients. In order to form the dictionary we use sigmoid
functions (sigmoids):

ψj

(
~θj, ~x

)
= σ

(
~xTθj+θ

0
j

)
, ~θj = (θj, θ

0
j ), θj ∈ Rd, θ0

j ∈ R1, where σ (z) =
ez − e−z

ez + e−z
, z ∈ R1.

The dictionary consisting of such functions can be used for approximation of rather wide
class of functions f , see the results in the papers [5, 6]. For example in [5] it is shown that
the approximator f̂ , composed of p sigmoid functions, allow to get the approximation

accuracy of the order O
(

1/p
1
d

)
. However if we include in the dictionary not arbitrary

sigmoid functions but select them depending on the approximated function f (“tune” the
dictionary functions), then the approximation accuracy has the order O (1/p).

2.2 Structure of the Approximation Algorithm

In order to construct the dictionary we need to select type and number of functions
in the dictionary and initialize their parameters. It is impossible to determine the
dictionary functions parameters explicitly. We apply the standard approach for ap-
proximation construction, which uses partitioning of the original sample into two parts
Slearning = Strain ∪ Svalidation in order to prevent over-training [7].

Algorithm 1 (Main Steps of the Approximation Construction Algorithm)

1. Model Selection Step (in the considered case the model structure is defined by the
number p of the dictionary functions).

2. Initialization Step: a) divide the sample Slearning into sub-samples Strain and Svalidation,
b) set the initial values of the dictionary functions parameters Θ and expansion co-
efficients ~α.

3



3. Training Step: a) iteratively minimize Q
(
Strain, f̂

)
with respect to the parameters

Θ and ~α, b) stop minimization if the error Q
(
Svalidation, f̂

)
begin to increase.

Each of the steps of Algorithm 1 is a separate sub-problem. There exists a lot of
methods for solution of these sub-problems. In this paper we propose more efficient
methods (except a solution for the sub-problem of the dictionary size p selection). As
for the choice of the dictionary size p then usually some upper bound on its value is
defined depending on the learning sample size and the exact value of p is selected using
cross-validation.

2.3 Optimization Algorithm

Usually in order to optimize the error function (see step 3 of algorithm 1) with respect
to parameters of complex regression models (for example, multi-layer neural networks)
gradient methods are used due to very high dimensionality of the parametric space. Since
in our case the number of parameters is relatively small then we can use second order
optimization methods. The Gauss-Newton method [8] is the most common method for

minimizing functions of the form Q
(
Strain, f̂

)
=
(
~y − f̂(X)

)T (
~y − f̂(X)

)
, where X is

a matrix of all points from Strain and ~y = f(X) is a vector of the function f values at
these points. In fact the main difference between this method and the Newton method
consists in how the matrix of second order derivatives of the error function is calculated.
Let us denote by Ω = {Θ, ~α} the set of all parameters of the model (parameters of the
dictionary functions and the corresponding expansion coefficients) then assuming that a
residual vector components ~e = f̂(X)− ~y are small we get that

(1) QΩΩ = f̂T
Ω f̂Ω +

Ntrain∑
i=1

eif̂ΩΩ (~xi) ≈ f̂T
Ω f̂Ω = JTJ,

where J = f̂Ω is a matrix of the model f̂ derivatives with respect to Ω at the points
Strain. Since QΩΩ ≈ JTJ � 0 then the approximate matrix of the second derivatives,
calculated according to the formula (1), is always non-negative definite. This partially
solves degeneracy problem of the Newton method being applied to non-convex functions.

Nevertheless we should note that during the minimization of the error function ap-
proximation of the Hessian QΩΩ ≈ JTJ can become degenerate and non-invertible.

The Levenberg–Marquardt algorithm [9] was developed to solve this degeneracy prob-
lem. The main idea is to add identity matrix with regularization multiplier to the ap-
proximate Hessian matrix when searching the step size according to the Gauss-Newton
method, i.e.

(2) Ωk = Ωk−1 −
(
JTJ + µI

)−1
QΩ.

The parameter µ defines behaviour of the algorithm: for small µ the step size is close
to the step size of the Gauss-Newton method, for big µ the step is done along the anti-
gradient with the size approximately equal to 1

µ
. Therefore we can always find such value

of the parameter µ, which provides decrease of the error function. When training the
model we will use the Levenberg–Marquardt algorithm (this method is also realized in
MatLab for ANN training).

4



3 Initialization Step

In this section we propose algorithms for solving two sub-problems of the initialization
step: extraction of the validation sample and initialization of the model parameters.
Also in sub-section 3.3 we describe a methodology for an experimental comparison of
approximation algorithms and provide results of this comparison.

3.1 Extraction of the Validation Sample

Let us consider the first sub-problem of the initialization step, i.e. decomposition of
the initial sample Slearning into two parts Strain and Svalidation, where Strain is used for an
iterative tuning of the model parameters and Svalidation is used to estimate a generalization
ability (an estimate of the proximity between the original function and its approximation)
and to stop the iterative tuning process when the over-training appears.

In order to estimate the generalization ability using Svalidation the set of pointsXvalidation =
{~x ∈ Svalidation} should be “uniformly” distributed among other points of the learning
sample Xlearning = {~x ∈ Slearning}. Standard algorithms for approximation construc-
tion perform decomposition into the validation Svalidation and the training Strain samples
randomly, which often results in inconsistent decomposition.

We will estimate the uniformity of Xlearning decomposition into the sets Xtrain and
Xvalidation using the following criterion

(3) U(Xtrain, Xvalidation) =
1

#r1

∑
{~xi,~xj}∈r1

1

‖~xi − ~xj‖
− 1

#r2

∑
{~xi,~xj}∈r2

1

‖~xi − ~xj‖
,

where r1 is the set of pairs of points such that both of points belongs either to Xtrain,
or to Xvalidation; r2 is the set of pairs of points such that one of them belongs to Xtrain,
and another belongs to Xvalidation; #ri is the cardinality of ri, i = 1, 2. When minimizing
U(Xtrain, Xvalidation) (with respect to different decompositions of Xlearning) the distance
between points from one and the same class is maximized and the distance between points
from different classes is minimized that fully meets our objectives.

Optimization of the criterion (3) is an NP -hard combinatorial problem that can not
be solved for reasonable time when the sample size Nlearning � 1. On the other hand for
the case Nlearning ∼ 10 we can perform optimization by the full search. Therefore let us
consider the simplification of this optimization problem: we divide all the design domain
into rather small hypercubes and we optimize the criterion locally by relocating points
from one class (Strain) to another class (Svalidation) only within each of the hypercubes.

In order to divide the design domain we use Classification And Regression Trees [10].
This method is based on the sequence of simple cuts of the design domain with respect
to the input vector components. In each of the hypercubes, obtained during the previous
iteration, we construct a constant approximation by averaging the output values of the
points belonging to this hypercube. The input component and the location of the next cut
are selected optimally in the sense of the mean square error of the corresponding piece-
wise constant approximation. There are a lot of criteria for stopping the tree construction
process. These criteria are based on the generalization ability estimation of the tree [3].
Here as a stopping criterion we use an upper bound on the number of points belonging to
each leave of the tree since the optimization complexity of the criterion (3) depends on
this upper bound.

5



Algorithm 2 (Sample Slearning decomposition)

1. Construct a regression tree [10] with an upper bound on the number of points belong-
ing to the tree leaves (the number of points should be bigger than leafmin = 8 and
smaller than leafmax = 16) approximating the function f with piece-wise constant
approximation. Let the number of leaves of the constructed tree is equal to some K.

2. Let sk be a set of points ~x ∈ Xlearning belonging to the leave with the number k.

3. For all k = 1, . . . , K using greedy algorithm (local optimization in each separate
hypercube) we decompose the set sk into subsets svalk and strk such that the criterion
U(svalk , strk ) takes its minimal value under the restriction that the fraction of the
validation sample size is not smaller than valpart = 0.2.

4. Construct Svalidation and Strain

Svalidation =
{
{~x, y = f(~x)} : ~x ∈

K⋃
k=1

svalk

}
, Strain =

{
{~x, y = f(~x)} : ~x ∈

K⋃
k=1

strk

}
.

The proposed algorithm contains two computationally expensive steps: construction
of the regression tree (complexity is equal to O(Nlearning log(Nlearning))) and local opti-
mization of the criterion U(svalk , strk ) (complexity is equal to O(K) = O(Nlearning)). For
the second step the constant in O(K) depends on the number of ways to decompose a
leave with leafnum ∈ [leafmin, leafmax] points into two parts. Due to the restriction on
the proportion between the sizes of the validation and the training samples this number is

equal to C
[leafnum·valpart]
leafnum

, i.e. it is bigger than 28 (for leafnum = leafmin = 8) and smaller
than 560 (for leafnum = leafmin = 16).

3.2 Initialization of the Model Parameters

Initialization of the dictionary functions parameters Θ significantly influences on the ap-
proximation construction process and the final approximation accuracy. The random
methods Nguyen–Widrow (NW) [11] and SCAWI [12] are the most widely used algo-
rithms for Θ initialization. These methods use some matrix of independent random
variables multiplied by a fixed factor defining scale and smoothness of the dictionary
functions.

Note that a random vectors generation in high-dimensional spaces leads to their clus-
tering thus giving rise to clustering of the directions

{
θj
}p
j=1

. We propose an initialization

algorithm, which generates a rich functional dictionary (in terms of a uniform distribution
of the directions). We generate the directions

{
θj
}p
j=1

uniformly on the unit sphere using

a method from [13]. This method is based on a normalization of points generated by
a multivariate normal distribution. The method uses the invariance property of a nor-
mal density relative to an arbitrary rotation and efficiently generates points with uniform
distribution on the unit sphere.

Let us now consider how to select norms values (defined by some scaling multipliers) of
the vectors

{
θj
}p
j=1

. The value of the norm influences the smoothness of the corresponding

sigmoid: for a sufficiently small value the sigmoid is almost linear on the compact D, for
a big value the sigmoid behaves like the step function. If one and the same value is

6



used for all norms then all dictionary functions have one and the same smoothness and
the dictionary is not “rich” enough. Therefore in order to define the norms values we
use multipliers generated by the uniform distribution in some range. Thus the vectors{
θj
}p
j=1

have different norms and finally the dictionary contains sigmoids with different

smoothness.

Algorithm 3 (Initialization of the parameters Θ)

1. Construct a matrix S of size p × d containing p vectors, generated by the uniform
distribution on a d-dimensional sphere of unit radius.

2. Let r =
√
d · p1/Ntrain and generate values of scaling multipliers ξj, j = 1, . . . , p

uniformly randomly on [0, r]. Such definition of r guarantees that the number of
points belonging to the domain of a sigmoid saturation is small [11].

3. Let us define the sigmoids direction vectors
{
θj
}p
j=1

according to the formula θj =

ξj · Sj, j = 1, . . . , p, where Sj is a j-th line of the matrix S. We define the offset
values

{
θ0
j

}p
j=1

in the same way as in [11], i.e., according to the uniform grid on the

interval [−r, r].

In the paper [16], written by authors, comparison of popular random initialization meth-
ods with the proposed method and several specially developed deterministic initialization
methods can be found.

3.3 Experimental Results

The proposed algorithms for the initialization step should be compared with the standard
approaches in terms of the average error of approximation and its variation. For generation
of test problems we use a set of artificial multidimensional functions used for testing
optimization algorithms. This choice is due to the fact that in the framework of surrogate
modelling instead of original objective function (and/or constraints) their approximations
are used. We distinguish two types of test problems:

1. Test functions with fixed dimension of the input vector ~x — allinit, beale, hartmann,
ishigami, wbd.

2. Test functions with dimension of the input vector ~x that can be set to some pre-
defined value — gSobol, michalewicz, rosenbrock, whitley, zdt3. In experiments we
vary the input dimension from 3 to 10.

Exact formulas for the test functions can be found in [14], [15].
As a relative approximation error we use the root-mean-square error normed by the

analogous error for the constant approximation:

(4) E
(
Stest, f̂

)
=

√√√√√∑Ntest

i=1

(
yi − f̂ (~xi)

)2

∑Ntest

i=1 (yi − ȳ)2
, ȳ =

1

Ntest

Ntest∑
i=1

yi.

7



Figure 1: Method for solving problems of the initialization step. Errors for some tests

The error comparable with 1 corresponds to a very inaccurate approximation and the
error comparable with 10−3 corresponds to a very accurate approximation. In order to
calculate the error we use a separate test set Stest.

For each function (or pair “function-input dimension” for test problems of the second
kind) we select the learning sample size such that the approximation error (4), obtained
using a standard approximation method, belongs to the interval 0.01−0.2 since this range
is of great interest for practice (usually smaller values are not required in practice). By the
standard approximation method we mean the realization of ANN from MatLab such that
Nguyen–Widrow algorithm is used for the initialization, the validation sample is extracted
randomly, and the training is performed by the Levenberg–Marquardt algorithm. In order
to select the optimal dictionary size (the number of functions p) in each experiment we
use brute force algorithm with the criterion defined by the approximation error, estimated
using cross-validation. Each separate experiment (the test function, the input dimension,
and the learning sample size are fixed) has the following set up: we generate 10 random
learning sample Slearning; for each sample we construct 10 approximators. We compare
the following algorithms: the standard ANN algorithm (the methods is denoted on plots
by number 1), the standard ANN with the proposed method for the validation sample
extraction (method 2), the standard ANN with the proposed method for parameters
initialization (method 3), the standard ANN with both of the proposed methods for the
initialization step (method 4).

In the most cases the proposed algorithms for the initialization step (extraction of the
validation sample and initialization of the parameters), applied either independently or
simultaneously, improve the final quality of the approximation models. It is interesting
that the combination of the proposed algorithms (method 4) in most cases makes it
possible to obtain the model with the superior accuracy compared with the accuracies
of the models obtained using these algorithms independently. Therefore new algorithms
are more effective, see examples of diagrams in figure 1, and also Dolan–More curves in
section 5.

8



4 Approximation Training

4.1 Separability of Variables

Let us consider the error function on the training sample as a function of the parameters
Θ and ~α:

Q
(
Strain, f̂

)
= Q (Θ, ~α) =

(
~y − f̂ (X,Θ, ~α)

)T (
~y − f̂ (X,Θ, ~α)

)
.

We should note that the dependence of the error function Q on the dictionary functions
parameters Θ is non-linear and very complex. At the same time the dependence of Q
on expansion coefficients ~α is quadratic. For the fixed Θ the optimal values of ~α can be
found by the least squares method:

~α (Θ) =
(

Ψ (Θ)T Ψ (Θ)
)−1

Ψ (Θ)T ~y, where Ψ (Θ) =
{
~ψ (Θ, ~xi) , i = 1, . . . , Ntrain

}
.(5)

We take this fact into account when tuning parameters of the approximator. For
this we consider the objective function R (Θ) = Q (Θ, ~α (Θ)), where ~α (Θ) is calculated
according to formula (5). When calculating the expansion coefficient according to (5)
a non-linear dependence ~α = ~α (Θ) should be taken into account when calculating the
derivatives RΘ and RΘΘ. An algorithm for such calculations was proposed in [17] and its
theoretical properties were investigated in [18].

However this algorithm has significant shortcoming: in formula (5) we use inversion of
the matrix ΨTΨ, which in general can be degenerate. In such case the inverse matrix does
not exists and it is not reasonable to use the error function R (Θ). Such kind of situations
are investigated in details in the framework of the linear regression methods [19]. It can be
shown that even if the matrix ΨTΨ is not degenerate but is ill-conditioned than estimates
of the coefficients ~α are unstable (in statistical terms this means that the estimate of ~α
has very big variance). In such case calculated values of the gradient and the Hessian of
the error function are also unstable: even with small variations of the parameters Θ the
first and the second derivatives of the error function change significantly resulting in a
very low training speed.

Let us consider a classical approach for regularization in linear regression problems,
namely, ridge regression [19]. We add to the matrix ΨTΨ a positively definite matrix λIp,
where Ip is a unit matrix with sizes p × p and λ > 0 is a some constant. In such case
formula (5) takes the form

~α (Θ) =
(

Ψ (Θ)T Ψ (Θ) + λIp

)−1

Ψ (Θ)T ~y.(6)

It is obvious that we can reach any level of matrix
(

Ψ (Θ)T Ψ (Θ) + λIp

)
conditionality

by increasing the value of λ. Using the ridge regression is equivalent to re-definition of
the error function in the following way:

R̃ (Θ) = Q̃ (Θ, ~α (Θ)) =
(
~y − f̂ (X,Θ, ~α (Θ))

)T (
~y − f̂ (X,Θ, ~α (Θ))

)
+ λ~α (Θ)T ~α (Θ) .

Statement 1 The gradient and the Hessian of the error function R̃ can be calculated
according to the following formulas: R̃Θ = Q̃Θ = ~eTJ,

R̃ΘΘ = JTJ + ~e� f̂ΘΘ −
(
~eT �ΨΘ + JTΨ

) (
ΨTΨ + λI

)−1 (
~eT �ΨΘ + JTΨ

)T
.(7)

9



Proof. Let us find the first derivatives of the function R̃ (Θ):

R̃Θ = Q̃Θ + Q̃ααΘ = Q̃Θ +~0αΘ = Q̃Θ.(8)

Q̃α = ~0 since coefficients ~α (Θ), obtained using (6), is the minimizer of the function

Q̃ (Θ, ~α (Θ)). Let us differentiate equality (8) with respect to Θ:

R̃ΘΘ = Q̃ΘΘ + Q̃ΘααΘ.(9)

Contrary to formula (8) the second summand is not equal to 0. Therefore it is necessary

to calculate αΘ. Taking into account the equality Q̃α = ~0 as a consequence we get that
the differential dQ̃α = 0:

dQ̃α = Q̃ααdα + Q̃αΘdΘ = 0 ⇒ αΘ =
dα

dΘ
= −Q̃−1

ααQ̃αΘ.

Then formula (9) takes the form R̃ΘΘ = Q̃ΘΘ − Q̃ΘαQ̃
−1
ααQ̃αΘ.

Now let us write explicitly expressions for the derivatives of the function Q̃. Let us
denote by J = f̂Θ(X) the matrix of the derivatives of the model f̂ with respect to Θ at
the points Strain. Therefore

Q̃Θ = ~eTJ, Q̃ΘΘ = JTJ + ~e� f̂ΘΘ, Q̃αα = ΨTΨ + λI, Q̃Θα = ~eT �ΨΘ + JTΨ.(10)

Final formula (7) can be obtained directly from R̃ΘΘ = Q̃ΘΘ − Q̃ΘαQ̃
−1
ααQ̃αΘ using

expressions for the derivatives from (10). �

Assuming the residual vector ~e to be small we neglect in (7) all terms with ~e:

R̃ΘΘ ≈ JTJ−
(
JTΨ

) (
ΨTΨ + λI

)−1 (
JTΨ

)T
.(11)

Therefore we get explicit formulas for calculation of the gradient and the approximate
Hessian matrix of the modified error function R̃(Θ) that are necessary for optimization
based on the Levenberg–Marquardt algorithm, see formulas (1) and (2).

We should note that the product JTJ ≈ Q̃ΘΘ is non-negatively definite. Let us show
that the Hessian R̃ΘΘ also has this property. In such case we can construct accurate
local-quadratic approximations of the error function during its optimization.

Statement 2 The matrix H
def
= JTJ−

(
JTΨ

) (
ΨTΨ + λI

)−1 (
JTΨ

)T
is non-negatively

definite for any λ ≥ 0.

Proof. Let us rewrite matrix H in the following form:

H = JTJ−
(
JTΨ

) (
ΨTΨ + λIp

)−1 (
JTΨ

)T
= JT

(
IN −Ψ

(
ΨTΨ + λIp

)−1
ΨT
)

J.

Let Ψ = VQUT be a singular value decomposition for the matrix of regressors then

Ψ
(
ΨTΨ + λIp

)−1
ΨT =VQUT

(
UQ2UT + λUUT

)−1
UQVT =

=VQUTU
(
Q2 + λIp

)−1
UTUQVT = VQ2

(
Q2 + λIp

)−1
VT.

10



Let q̃j be eigenvalues of the matrix VQ2 (Q2 + λIp)
−1

VT then q̃j =
q2j

q2j +λ
, where qj are

elements of the matrix Q. The eigenvalues of the matrix P = IN−Ψ
(
ΨTΨ + λIp

)−1
ΨT are

not smaller than the difference of the minimal eigenvalue of IN and the maximal eigenvalue
from the set q̃j. It is obvious that this difference is non-negative since (1−maxj q̃j) =(

1−maxj
q2j

q2j +λ

)
≥ 0 for λ ≥ 0. Therefore the matrix P is non-negatively definite and

the matrix H = JTPJ is also non-negatively definite. �

Now let us estimate the computational complexity of formula (11) for the Hessian

calculation R̃ΘΘ. The size of the Jacobian matrix J is equal to Ntrain × p(d + 1),
the size of the matrix with regressors Ψ is equal to Ntrain × p. We need to perform
O(Ntrainp

2d2) operations in order to calculate the main term JTJ , which is necessary
also for calculation of the standard error function. At the same time additional sum-
mand

(
JTΨ

) (
ΨTΨ + λI

)−1 (
JTΨ

)T
can be calculated for O(Ntrainp

2d+p3 +p3d+p3d2) =
O(Ntrainp

2d+ p3d2) operations. Since in the considered class of approximation problems
Ntrain � d, Ntrain � p then calculation of the additional summand requires significantly
smaller number of operations compared to the number of operations for calculation of the
main summand.

The proposed error function R̃ (Θ) not only increases approximation accuracy but
also decreases training time compared to the training time when using the standard error
function Q (Θ, ~α) [20]. This advantage can be explained by two reasons: some part of
the parameters are estimated optimally on each iteration of the training algorithm and
adaptive regularization increases numerical stability of the training process. In this work
we assume that the output y dimension is equal to 1, but for many applied problems the
output y can be multidimensional and its dimension dy can even be higher than the input

dimension d. In such case the number of parameters of the standard error function is d+dy
d

times higher than that of the modified error function. Thus separability of the variables
can significantly decrease the number of optimized parameters in some problems.

4.2 Adaptive Regularization

Standard approaches for regularization of models with the structure f̂ (~x) = ~ψ (Θ, ~x) ~α
use the L2 penalty on all parameters of the model [3] and a regularization coefficient
is determined experimentally using some additionally extracted validation samples and
multiple training of the surrogate model. In [21] some Bayesian approach is proposed for
the regularization parameter selection and again the L2 penalty on all parameters of the
model are used. This method has two key shortcomings: selection of the regularization
parameter does not take into account the error of approximation; the penalty incorporates
norms of the parameters Θ and ~α with equal weights and does not take into account
essentially different nature of these parameters.

In the proposed approach we penalize only the expansion coefficients ~α and regular-
ization parameter λ is selected optimally (in some sense) with taking into account the
error of approximation.

When tuning the regularization parameter λ during the training process the functional
dependency λ = λ (Θ) appears. In general case we should take into account this depen-
dency when calculating the derivatives of the error function with respect to Θ. However
in the framework of the considered approximation problem optimization of the error func-

11



Figure 2: Methods for solving problems of the training step. Errors for some tests.

tion on the set Strain can be considered as the process for generation of different models
with the final aim to obtain the model with the smallest error on the independent test set
Stest rather than for finding the minimum of the error function on the train set Strain. Due
to this remark change of the regularization parameter value during the training process
is allowed and we can neglect these changes when calculating the derivatives of the error
function.

In order to select the regularization parameter λ on each iteration of the training algo-
rithm we minimize the GCV criterion (Generalized Cross Validation [3]) estimating the
approximation error on the test sample in linear regression problems (~α (λ) is calculated
according to (6))

GCV (Ψ, λ) =

∑Ntrain

i=1

(
yi − f̂(xi)

)2

(
1− 1

Ntrain
tr (L)

)2 =

(
~y −Ψ~α(λ)

)T(
~y −Ψ~α(λ)

)
(

1− 1
Ntrain

tr
((
~ΨT~Ψ + λI

)−1
~ΨT~Ψ

))2 .

Let us note that when minimizing the criterion GCV with respect to λ it is necessary
to control condition number of the matrix ΨTΨ + λI in order the training process to be
stable [22]. It is proposed to impose a lower bound on the value of λ such that provides
necessary level of the conditionality (1012 in our realization of the algorithm).

4.3 Experimental Results

Let us use the testing methodology described in section 3.3. We compare the follow-
ing methods: the standard method (method 1), the method incorporating algorithms
from sections 3.1 and 3.2 (method 4), the method incorporating only the modified error
function (method 5), the method incorporating all the proposed algorithms (method 6).
The most indicative results are given on the figure 2. The proposed modification of the
error function allows to significantly improve approximation quality for some problems
(for example, function michalewicz). If we consider method 6, which incorporates all the
proposed algorithms, then we can see that this method not only additionally increases ap-
proximation accuracy compared to the best of two methods 4 and 5, but also significantly
decreases the approximation error in some cases (for example, zdt3 function).

12



Figure 3: Results for artificial problems. Median values (accuracy)

5 Experimental Results

In this section we show results of full experiments on artificial functions and compare the
proposed approach with other similar approaches on some applied problems of surrogate
modelling. We use Dolan–More curves Pk(a) [23] for visualization of the results. The
quantity Pk(a) shows on which fraction of the problems the errors of the considered
approximation method k is not a ≥ 1 higher than the minimal (among all the considered
methods) approximation error for the corresponding approximation problems.

5.1 Artificial Functions

Using Dolan–More curves let us compare the standard algorithm with all algorithms
from sub-sections 3.3 and 4.3 on all problems used for testing. As a “separate problem”
we consider all independently generated samples, i.e. 10 problems correspond to each
function. We use the following criteria of approximation quality: median of the errors
(accuracy) and standard deviation of the errors (scatter of the errors). For each problem
we run each method 10 times (the error for each run is estimated using formula (4)) and
estimate the accuracy and the scatter using results of these runs. Results of comparison
are given on figures 3 and 4. We can see that the main contribution into accuracy
is obtained due to the modified error function with the adaptive regularization, but the
algorithms of the initialization step also significantly improve the accuracy of the methods
(see curves for methods 5 and 6).

5.2 Real Applied Problems

Let us compare approximation quality of the proposed method (combining all the pro-
posed algorithms) with widely-used methods for approximation construction. We use
realization of such methods in MatLab and modeFrontier. This software systems are used
by many of industrial companies. There are a number of methods for approximation
construction, implemented in MatLab and modeFrontier, namely, ANN, regression based

13



Figure 4: Results for artificial problems. Standard deviation (scatter)

on Gaussian Process, etc. We should note that many of these methods have serious re-
strictions on possible characteristics of the sample (input dimension d and sample size
Nlearning), which in turn limits the applicability of the methods and as a consequence
reduces the accuracy of approximation. In most of the cases such restrictions are due to
algorithmic peculiarities of the corresponding realizations.

Let us consider results on some indicative problems covering a wide range of sample
sizes and input dimensions:

• the strength of the composite structure of the aircraft fuselage [4],

• aerodynamic characteristics of the aircraft wing [24],

• structure of the sand in the field [25],

• concrete compressive strength [26].

Reference results (of approximation algorithms from MatLab and modeFrontier) were
obtained in 2010 during work on the PhD thesis. We measure the approximation quality
using error (4), calculated using the independent test set Stest. Results of the comparison
are given in table 1 (for the problem of approximation of the aircraft wing aerodynamic
characteristics some of the methods do not work due to high input dimensionality).

6 Conclusions

We consider problem of approximation of a multidimensional dependency based on a linear
expansion in a dictionary of parametric functions. We propose new methods for solving
sub-problems that arise in the framework of approximation construction problem. Each
of these methods as well as their combination significantly increases the approximation
quality compared to the approximation quality obtained using standard methods. Using
the proposed algorithm we were able to solve important applied problems, see for example
[4].

14



Table 1: Relative Approximation Error

Problem Composite Struct. Wing Charact. Sand Concrete
Dimension of ~x 16 78 3 8

Sample size 50000 65000 10000 1030
Proposed approach 0,092 0,159 0,091 0,320

Lin. Reg. 0,616 0,330 0,698 0,6391
MatLab Quad. Reg. 0,390 - 0,608 0,485

ANN 0,194 0,258 0,132 0,350
RBF 0,336 0,628 0,464 0,371
K-NN 0,597 1,115 0,470 0,529

Anisotr. Kriging 0,528 - 0,813 2,521
mode Kriging 0,382 1,031 0,937 0,889

Frontier RBF 0,363 9,392 0,494 0,367
ANN 0,299 1,424 0,356 0,730

Gaussian Proc. 0,807 - 0,561 2,088

References

[1] Forrester A., Sobester A., Keane A. Engineering Design via Surrogate Modelling.
A Practical Guide. Wiley. 2008.

[2] Kuleshov A., Bernstein A. Cognitive technologies in adaptive models of complex
plants // Keynote papers of 13th IFAC Symposium on Information Control Prob-
lems in Manufacturing (INCOM’09). 2009. P. 70–81.

[3] Hastie T., Tibshirani R., Friedman J. The elements of statistical learning: data
mining, inference, and prediction. Springer. 2008.

[4] Grihon S., Alestra S., Burnaev E., Prikhodko P. Optimization of Composite Struc-
ture based on Surrogate Modelling of Buckling Analysis // Proc. of the “Information
Technologies and Systems” conf. 2012. P. 41–47.

[5] Pinkus A. Approximation theory of the MLP model in neural networks. Acta Nu-
merica (8). Cambridge Univ. Press. Cambridge. 1999. P. 143–195.

[6] P. Petrushev, Approximation by ridge functions and neural networks. SIAM J.
Math. Anal. 1998. V. 30. P. 155–189.

[7] Vapnik V. N., Chervonenkis A. Ja. Ordered Risk Minimization (I and II). Autom.
Remote Control. 1974. V. 34. P. 1226–1235; 1974. V. 34. P. 1403–1412.

[8] Nocedal J., Wright S. Numerical Optimization, 2nd Edition, Springer. 2006. P. 664.

[9] Marquardt D. W. An Algorithm for Least-Squares Estimation of Nonlinear Param-
eters. Journal of SIAM. 1963. V. 11 No. 2. P. 431–441.

[10] Breiman L. Classification and regression trees. Wadsworth. 1984.

15



[11] Nguyen D., Widrow B. Improving the learning speed of 2-layer neural networks
by choosing initial values of the adaptive weights // IJCNN International Joint
Conference. 1990. P. 21–26.

[12] Drago G. and Ridella S. Statistically controlled activation weight initialization
(SCAWI). Trans. Neur. Netw. IEEE Press. 1992. V. 3. No. 4. P. 627–631.

[13] Rubinstein R. Y. Generating random vectors uniformly distributed inside and on
the surface of different regions. European Journal of Operational Research. 1982.
V. 10. No. 2. P. 205–209.

[14] Hedar A. R. Global optimization test problems // http://www-optima.amp.i.kyoto-
u.ac.jp/member/student/hedar/Hedar files/TestGO.htm

[15] Molga M., Smutnicki C. Test functions for optimization needs //
http://zsd.ict.pwr.wroc.pl/files/docs/functions.pdf

[16] Belyaev M. G., Burnaev E. V., Erofeev P. D., Prikhodko P. V. Comparison of the
efficiency of the initialization methods for non-linear regression models // Proc. of
the “Information Technologies and Systems” conf. 2011. P. 315–320.

[17] Golub G. H., Pereyra V. The differentiation of pseudo-inverses and nonlinear least
squares problems whose variables separate. SIAM J. Numer. Anal. 1973 V. 10. P.
413–432.

[18] Ruhe A., Wedin P. A. Algorithms for separable nonlinear least squares problems.
SIAM Review, 1980. V. 22. No. 3. P. 318–337.

[19] Demidenko E. Z. Linear and non-linear regression. Finance and stochastics. 1981.

[20] Belyaev M. G., Lyubin A. D. Peculiarities of the optimization problem, which arises
when constructing an approximation of a multidimensional function // Proc. of the
“Information Technologies and Systems” conf. 2011. P. 415–422.

[21] Foresee D. and Hagan M. Gauss-Newton approximation to Bayesian learning //
Proc. of the Inter. conf. on Neural Networks. 1997. V. 3. P. 1930–1935.

[22] Belyaev M. G., Burnaev E. V. Adaptive regularization in the problem of multidi-
mensional functions approximation // Proc. of the “Information Technologies and
Systems” conf. 2009. P. 431–435.

[23] Dolan E., More J. Benchmarking optimization software with performance profiles.
Mathematical Programming, Ser. A 91. 2002. P. 201–213.

[24] Chervonenkis A. Ya., Chernova S. S., Zykova T. V. Applications of kernel ridge es-
timation to the problem of computing the aerodynamical characteristics of a pas-
senger plane (in comparison with results obtained with artificial neural networks).
Automation and Remote Control. 2011. V. 72. No. 5. P. 1061–1067.

[25] IC Fault dataset //
http://imperial.ac.uk/earthscienceandengineering/research/perm/icfaultmodel

[26] Concrete Compressive Strength dataset // http://archive.ics.uci.edu/ml/datasets

16


