

Airfoil trailing-edge optimization for noise reduction

Pavel Kholodov, Stéphane Moreau

Université de Sherbrooke, QC, Canada

DATADVANCE User Conference 2020 06/10/2020

Profile: Aeroacoustic Group at UdeS

Aerodynamic noise prediction and minimization:

Computational

Experimental

Analytical

and a sold complete state

Motivation: airfoil trailing-edge noise (1/2)

• Why important?

Wind turbines

• How generates?

P. Kholodov, S. Moreau DATADVANCE User Conference 2020

Motivation: airfoil trailing-edge noise (2/2)

Many shapes, but no one seems the best

Goal of the study:

Find the optimal shape of the trailing-edge

Motivation: practical problems

Motivation: constrained optimization

SHERBROOKE

Combine the acoustical and aerodynamical optimum

DATADVANCE User Conference 2020

Problem statement and parameterization

Local shape: B-spline with 2 knot points (4 parameters) **Global size:** depth & wavelength (+2 parameters) **Aerodynamics:** 2 constraints (lift/drag ratio, moment)

Objective function: Noise reduction

Variables						+ -	∧ ∨ ≡	-
Name	Туре	Size	Lower bound	Upper bound	Levels	Constant	Value	
p11	Continuous	1	0.0	0.2500				_
p12	Continuous	1	-0.2500	0.2500				
p21	Continuous	1	0.2500	0.5000				
p22	Continuous	1	-0.2500	0.2500				Find $\vec{x} =$
e	Continuous	1	0.0050	0.0250				
I	Continuous	1	0.0050	0.0250				
Filter Number of designs: 300	▼ Hints:						+	
ilter Number of designs: 300 Responses	▼ Hints:					+ -	> +	
ilter Number of designs: 300 Responses Name	Hints: Type	Size	Lower bound	Upper bound	Value	+ -	+ ^ ~ = Blackbox	subjec
Filter Number of designs: 300 Responses Name NR	Hints: Type Minimization	Size	Lower bound	Upper bound	Value	Function Generic	+ • • • = Blackbox	subjec
ilter Number of designs: 300 Responses Name LDR	Hints: Hints: Type Minimization Constraint	Size 1 1	Lower bound	Upper bound	Value	+ — Function Generic Generic	+ • • • = Blackbox	subjec
Filter Number of designs: 300	▼ Hints:						*	_

Find $\vec{x} = \{p_1, p_2, \varepsilon, l\}^T$ such that minimizes noise reduction (NR)

UNIVERSITÉ DE

RBROOKE

subject to constraints:

 $\{0.0, -0.25\}^T \le p_1 \le \{0.25, 0.25\}^T$ $\{0.0, -0.25\}^T \le p_2 \le \{0.25, 0.25\}^T$ $0.01 \le \varepsilon/c \le 0.2$

 $0.01 \le l/d \le 0.1$

Pre-generate all DoE samples (118 pts) Acoustics: cheap (<1 s / point) direct evaluations & solve on a cluster Aerodynamics: expensive (~2 h / point) needs a surrogate model ٠ Generate samp.. Design space e... Construct a surrogate model Surrogate model (aerodynamics) RSM model Approximation... Dump samples CSVGenerator Compute LDR PythonScript Compute the constraints Define the problem ••••• DSE read json Text Compute En PythonScript [ln] [Out] Read input data Solve analytical model Compute the Runner Composite noise (analytica)

DoE for aerodynamics

Lift/Drag ratio

Moment

Rows:

Columns:

DoE

Surrogate model: Gaussian Process (GP)

SHERBROOKE

DATADVANCE User Conference 2020

Optimization (1/3)

- Surrogate-based optimization
- 228 evaluation steps
- GPI = 50 (25,75 tested)

Constraint on moment is harder to respect

Optimization (2/3)

Global Optimization: Optimal values

12

Conclusions

reduce the noise & preserve the performance

Serration depth is the most important

LDR change is smaller

than $\overline{C_m}$

Moment constraint limits the noise reduction

P. Kholodov, S. Moreau **DATADVANCE User Conference 2020**

More information: Pavel.Kholodov@usherbrooke.ca

- P. Kholodov, S. Moreau. Optimization of serrations for broadband trailing-edge noise reduction using an analytical model. 25th AIAA/CEAS Aeroacoustics Conference. Delft, The Netherlands, 2020. AIAA2019-2655. <u>https://doi.org/10.2514/6.2019-2655</u>
- P. Kholodov, S. Moreau. Numerical study of optimized airfoil trailing-edge serrations for broadband noise reduction. *AIAA AVIATION Forum, 2020. AIAA2020-2541. <u>https://doi.org/10.2514/6.2020-2541</u>*
- P. Kholodov, S. Moreau. Optimization of trailing-edge serrations with and without slits for broadband noise reduction. *Journal of Sound and Vibration, 115736, 2020. <u>https://doi.org/10.1016/j.jsv.2020.115736</u>*

Backup

Noise reduction due to serrations

1) "breaking coherence" Reduces the scale of interactions 2) "destructive interference" Tips and roots emit their own wavelengths that destruct each other flow

ε

Acoustics: Analytical model

Trailing-edge noise model for serrated airfoil

- Zero-thickness flat plate at 0° AoA
- Semi-infinite in *x*
- Spanwise-periodic
- Frozen turbulence

Ayton, JFM 2018 Lyu & Ayton, AIAA2019-2674 Sanjosé et al., AIAA2019-2450

Acoustics: Analytical model

(Ecole Centrale de Lyon, France)

Acoustics: Analytical model

Noise reduction

Aerodynamics: CFD RANS model

- 3D periodic model
- 2 wavelengths
- constant width at the trailing edge

no roundings included (except the roots)

Aerodynamics: CFD RANS model

0.1 m/s no-slip wall 6c 16 m/s $P_{\rm s} = 97kPa$ - Airfoil 10c 1.5c 0.1 m/s 1.000 (m) 0.250 0.750

 $P_s = 97kPa$

$P_s = 97kPa$

UNIVERSITÉ DE

SHERBROOKE

ANSYS Fluent 2019R2

Incompressible

Steady-state

• $k - \omega$ SST model

• 2^{nd} order scheme

DoE for aerodynamics

Model statistics

- Effective sample size: 118
- Duplicate points: 0
- Ambiguous points: 0

Errors	Train accuracy	Internal validation
RRMS	0.14	0.20
Max	0.15	0.21
Q99	0.07	0.11
Q95	0.07	0.09
Median	0.02	0.03
Mean	0.02	0.03
RMS	0.03	0.04
R^2	0.98	0.96

Surrogate model: Gaussian Process (GP)

Model statistics:

	R^2	RMS (rel.), %	Max error (rel.), %
6 inputs	0.9742	0.33	0.69
4 inputs	0.7980	0.89	1.74

Accuracy statistics of the surrogate models for the prediction of the lift-to-drag ratio.

~17% of precision loss

	R^2	RMS (rel.), %	Max error (rel.), %
6 inputs	0.9975	0.42	0.92
4 inputs	0.9776	1.33	2.16

Accuracy statistics of the surrogate models for the prediction of the moment coefficient.

x3 larger error with 4 variables

Use 6-input model for the optimization

