LABORATORY OF CYBER-PHYSICAL SYSTEMS

Skoltech

Skolkovo Institute of Science and Technology

Data Science	☐ Space Systems				
户 Biotechnology	본 Petroleum Engineering				
Photonics and Quantum Materials	P Advanced Manufacturing and Materials				
$\mathbb P$ Mathematical Physics	🏳 Materials Science				
Computational Science					

and Engineering

AGENDA

- About Skoltech Cyber-Physical Laboratory
- Project-oriented courses in Skoltech
- pSeven in industrial applications
- pSeven in educational applications
- pSeven in scientific industrial applications

Digital twins of complex technical systems Industrial AI for Design & Manufacturing

Prescriptive analytics and preventive maintenance

DIGITAL TWIN

ML* models
High speed
Lack of data
Non-physical models

Digital Twin
Physics-based models

Low speed
Physics-based

- Use data to find the dependencies
- Decision trees
- Random forest
- Neural networks
- Kriging, etc.

Use dependencies to generate data

Numerical methods

- Structural mechanics
- Fluid dynamics
- Heat and mass transfer
- System dynamics

*machine learning

TECHNOLOGY STACK

EDUCATION BASED ON PROJECT ORIENTED COURSES

Page 6 2019-06-10

TUBE-LAUNCHED UAV DESIGN AND PROTOTYPE

E.

PROJECT-BASED EDUCATION ON DIGITAL DESIGN. HAPS DESIGN

PROJECT-BASED EDUCATION ON DIGITAL DESIGN. TBW DESIGN

DIGITAL DESIGN WORKFLOW

CONTINUOUS CASTING OF A STEEL. SECONDARY COLING ZONE OPTIMIZATION

DIGITAL TWIN IN METALLURGY INDUSTRY

Benefits

Decrease in economic losses for operation and repair

Optimization of the technological parameters

For continuous casting machines, casting speed increase up to 10% with quality improvement

APPLICATION OF DIGITAL TWINS IN MODERN STEELMAKING

Skoltech

Skolkovo Institute of Science and Technolog

MODELS AND ALGORITHMS: HEAT TRANSFER PROBLEM

Skoltec

Skolkovo institute of Science

MODELS AND ALGORITHMS: PREDICTION OF CRACKS

 $\varepsilon = \varepsilon_z = \varepsilon_0 - x = \varepsilon^e + \varepsilon^t + \varepsilon^c$

Skoltec Skolkovo Institute of Science and Technolog

PRELIMINARY RESULTS: SOFTWARE

41

43

47

48 GEOM, COOL, LEN, 12 49 GEOM, COOL, SPR, 0.12

Skoltech Skolkovo Institute of Science and Technolog

CALCULATION RESULTS

Skoltech

Continuous casting machine with rollers

Temperature distribution (C)

PRELIMINARY RESULTS: 2D PLOTS

10 11 12

Ingot Z coordinate, m

13 14 15 16

Y (liquid) Y (solid)

17

18

0.025

Mold borde

1 2 3 4 5 6 7 8 9

Skoltech

Skolkovo Institute of Science and Technology

CALCULATION RESULTS

Skoltech

Stress in section (MPa)

Strain rate (sec⁻¹)

0.0729 0.06 0.04 0.03 0.02 0.01 0.02 0.00 0.02 0.00

Full strain

Damage

Calculation of the optimal heat removal mode in the SCZ for a casting speed of 1 m / min:

- The starting point is the data of water consumption in the SCZ for casting speeds of 0.6 1.0 m / min;
- Specific steel.

Results:

- Potential of optimization.
- Improving quality from 1.5 to 1 grade of damage

Maximum damage in the last section

Simple Workflow

TRUSS BRACED WING AIRCRAFT STUDENT PROJECT

Page 21 2019-06-10

Team of Introduction to PLM 2019

MBSE(Comparative study)

Range(km)

* Ting, Eric, et al. "Aerodynamic Analysis of the Truss-Braced Wing Aircraft Using Vortex Lattice Superposition Approach." *32nd AIAA Applied Aerodynamics Conference*. 2014.

Boeing SUGAR Truss-Braced Wing (TBW) Aircraft Concept *

MBSE (Preliminary sizing)

W_TO	77110 kg
Range	5700 km
W/S	456 kg/m^2 ~ 94 lb/m^2
T/W	0.4
CD0	0.0132
Wing Span	51.8 m
Wing area	111.5 m^2

Thrust over weight ratio vs. Wing loading

SPDM - 1st level optimization: general idea

Our goal is **to maximize the flight distance** (to fit the requirement of flight distance ≥ 5700 km) and to *minimize the total mass of aircraft*

Skoltech

Skolkovo Institute of Science and Technology

Truss taper ratio = $\frac{Root \ chord \ of \ truss}{Tip \ chord \ of \ truss}$

Parameter	Interval of variation
Truss taper ratio	[1; 5]
Length before bracing, m	[9; 14]
Wing span, m	[35; 60]
Truss root chord, m	[1; 5]

SPDM - 1st level optimization: results

Skoltech

Skolkovo Institute of Science and Technology

Parallel plots on optimized parameters

SPDM - 1st level optimization: results

Skoltech

Skolkovo Institute of Science and Technology

Dependency of airplane mass on flight distance

SPDM - 1st level optimization: results

Optimized parameter from the high level model

Length of flight, km	Take-Off Mass, kg	Length before bracing, m	Truss root chord, m	Truss taper ratio	Wingspan, m	Mass of fuel, kg	Mass of engine, kg
8114	96343	15.0	4.10	1.83	59.9	19905	2391
8057	96934	10.6	2.84	3.69	59.0	19813	2568
8088	96469	17.0	1.21	2.62	59.5	19871	2593

SPDM - 2rd level optimization: generative algorithm for structure **Skoltech**

31

SPDM - 2rd level optimization: generative algorithm for structure

Data Exchange Parameters	Structural Inputs for each pre-filtered candidate						
	Unit	Symbol	Description	Exchange			
Engine Weight	N	$\overrightarrow{F_{ENGINE}}$	Weight of the Engine	Exchanged Scalar			
Folding Weight	N	$\overrightarrow{F_{FOLDING}}$	Weight of the folding mechanism	Fixed scalar (4500 N)			
Folding Mechanism Position	m	L_f	Position of the folding mechanism	Exchanged Scalar			
Truss Fixation position	m	L _c	Position of the truss fixation on main wing	Exchanged Scalar			
Truss Taper Ratio	N/A	TR _{TRUSS}	$=\frac{W_{TRUSS}^{FUS}}{W_{TRUSS}^{TIP}}$	Exchanged Scalar			
Wing Taper Ratio	N/A	TR _{WING}	$=\frac{W_{FUS}^{WING}}{W_{TIP}^{WING}}$	Exchanged Scalar			
Truss root chord	m	W ^{FUS} TRUSS	Width of truss at fuselage position	Exchanged Scalar			
Wing root chord	m	W ^{FUS} WWING	Width of wing at fuselage position	Fixed Scalar (6 m)			
Truss wing distance	m	d _{AB}	Distance between wing and truss in the fuselage cross-section plane	Fixed Scalar (4 m)			
Wingspan	m	L _{WING}	Wingspan of the plane (2. $L_{WING} + D_{Fuselage}$)	Exchanged Scalar			
Lift	N/m	$\overrightarrow{dF_{LIFT}(x)}$	Distributed load of the lift forces in horizontal flight multiplicated by a Safety factor of 3	Exchanged Vector			
Fuselage Radius	m	D _{Fuselage}	Radius of the fuselage	Fixed (6m)			

Skoltech

SPDM - 3nd level optimization: workflow

Skoltech

Skolkovo Institute of Science and Technology

Results of optimization

• Results are based on the DOE with initial sample evaluation

Best design: flight distance = 7912 km ToM = 96433 kg

Optimized on 38 %

Skoltech

Skolkovo Institute of Science and Technology

NUMERICAL SIMULATION OF CRACKING DURING PULTRUSION OF LARGESIZE PROFILES

Numerical simulation of cracking during pultrusion of largesize profiles

Alexander Safonov, Mikhail Gusev, Anton Saratov, Iskander Akhatov

Center for Design, Manufacturing and Materials, Skolkovo Institute of Science and Technology, Moscow, Russia

22nd International Conference on Composite Structures and 1st Chinese Conference on Composite Structures Wuhan, China 02 Nov 2019

Applications & Main challenges

Industry

- Construction
- Corrosion resistance
- Electrical applications
- Marine
- Transportation
- Sport and Leisure

Advantages

- Light weight
- High strength
- Fatigue resistance
- Ease of installation
- Corrosion resistance
- Fire performance
- Easy maintenance
- Insulating properties

Challenges, Main reasons, Physics involved

- Peak temperature and degree of cure evolution
- Exothermic chemical reaction during curing
- Heater configurations
- Type of resin matrix system
- Geometry of the die
- Geometry of the resin injection chamber
- Phase transformations
- Anisotropic permeability of the fibre reinforcement
- Residual stresses and shape distortions
- Crack & void formations
- Pulling force
- Fibre misalignment

Safonov AA, Carlone P, Akhatov I. Mathematical simulation of pultrusion processes: A review. Composite Structures 2018;184. doi:10.1016/j.compstruct.2017.09.093

Skolte

Process simulation

- Heat transfer
- Curing of resin

$$\rho_c C_{pc}(T,\alpha) \frac{\partial T}{\partial t} = k \frac{\partial^2 T}{\partial x^2} + k \frac{\partial^2 T}{\partial y^2} + q,$$
$$\frac{d\alpha}{dt} = A_0 \exp\left(-\frac{E_a}{RT}\right) (1-\alpha)^n$$

• Stress-strain distribution

Cure-hardening/instantaneously linear elastic (CHILE) approach

$$E_m(T^*) = \begin{cases} E_m^0, & T^* < T_{C1} \\ E_m^0 + \frac{T^* - T_{C1}}{T_{C2} - T_{C1}} (E_m^\infty - E_m^0), & T_{C1} \le T^* \le T_{C2}, \\ E_m^\infty, & T^* > T_{C2} \end{cases}$$

 $T^* = T_g - T$, T_g – glass transition temperature depending on degree of cure

$$T_g(\alpha) = T_{g0} + (T_{g\infty} - T_{g0}) \frac{\lambda \alpha}{1 - (1 - \lambda)\alpha}$$

The model is implemented in ABAQUS using the user-subroutines: HETVAL, UEXPAN, UMAT, FILM, URDFIL, UFIELD, UEXTERNALDB

2D transient heat equation in the Lagrangian frame

G.L. Batch, C.W. Mocosko. Heat transfer and cure in pultrusion: model and experimental verification, *AIChE Journal*, 39, 7, 1993, pp. 1228-1241

2D plane strain model

I. Baran, C.C. Tutum, M.W. Nielsen, J.H. Hattel, Process induced residual stresses and distortions in pultrusion, *Composites Part B: Engineering*, 51, 2013, pp. 148-161

Optimization. Problem statement

Optimization parameters:

- Initial temperature of mixture, T₀
- Die 1-st zone temperature, T₁
- Die 2-nd zone temperature, T₂
- Pulling speed, u

Objective function of one criterion optimization:

• Pulling speed $\mathbf{u} \rightarrow \mathbf{max}$

Constraints:

- Transverse stress in pultruded rod, \boldsymbol{S}_{max}
- Maximum temperature of material, T_{max}
- Maximum temperature at the end section, T_{end}
- Degree of polymerization at the end section, $\boldsymbol{\alpha}$

Skolt

General Workflow

pSeven. Workflow

- · Single-criterion optimization problem: SBO (surrogate-based optimization) method
- · Four constraints

Best point

Initial vs Optimum configuration comparison

		Constraints						
	u, cm/min	Т ₀ , °С	<i>T</i> ₁ , °C	<i>T</i> ₂ , °C	T _{end} , °C	<i>T_{max},</i> °C	α_{min}	$\sigma_{xx_{max}}/\sigma_u$
Boundaries	-	20-70	120-170	150-200	<101.5	<210.0	>0.90	<1.0
Initial	5.0	50	150	190	87.6	202.9	0.99	0.99
Optimum	6.0	55	170	170	101.4	203.0	0.97	0.95

Achieved **20%** of increasing the pulling speed

Computation results. Approximation model

Contour plot with boundary restrictions for Initial and Optimal area based on Surrogate Model

Skoltec

The analysis of numerical model: how input parameters are influence on the output Maximum Temperature, degree of cure and Transversal Stress

Skolte

Laboratory of Composite Materials and Structures at Center for Design, Manufacturing, and Materials (CDMM)

- Shape distortions
- Technological defects
- Effect of process parameters
- Numerical simulation of process
- Thermoplastic pultrusion
- Process optimization

Pultrusion machine: Pultrex Px500-6T

- Pulling force: 60kN
- Pulling speed: 0.04+5 m/min

- Optimization and Surrogate Modeling in pSeven for scientific projects
- Results of application pSeven in industry oriented projects
- Design space exploration in pSeven for research education student projects
- Easy to connect pSeven to the numerical model in various software
- Numerical simulation of various complex problems

M.Gusev@skoltech.ru

Mikhail Gusev, PhD, research scientist

