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How Machine
Learning Empowers
Models for Digital
Twins   
Dmitry Frolov, DATADVANCE

Although the component structure of digital twins is not yet defined clearly and
can differ drastically from implementation to implementation, we can see that
one thing is present everywhere and powers the whole process and that is

predictive models. Predictive models are used in the core of almost every digital
twin that is already implemented or being developed and by using machine learning
to create such models, the full range of data, from all sources, can be used. By
predictive model we mean a digital representation of asset’s behavior that not only
gives the understanding of the behavior itself but often collects individual changes of
the asset and adjusts itself accordingly. 
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Machine Learning for Building Predictive
Models
Traditionally, predictive models can be built using existing
parametrized simulations or something more
sophisticated from an engineering point of view, like full-
scale model-based system engineering (MBSE).
Evaluation of these simulation-based models, of course,
takes significant time. To clarify, in this article we refer to
models that use physics-based, numerical computations,
such as those using FEA or CFD techniques, as
simulations.

While industry moves towards web-based applications,
cross-department collaboration and engineering
software democratization, predictive models should
become more accessible to build, safer to distribute and
faster to operate. This means that the available design,
simulation, production and operational data and models
should be converted from thousands of items and
resource intensive simulations into easy-to-use and fast
functions.

Machine learning algorithms come in handy in converting
such data into such functions. Machine learning is an
umbrella term that often covers different techniques and
algorithms used in data mining, deep learning, predictive
analytics, etc. Engineers often implement algorithms like
Gradient Boosted Regression Trees (GBRT), different
variations of Gaussian Processes (GP), High-Dimensional
Approximation (HDA), Mixture of Approximators (MoA),
Tensor Approximation (TA), Piecewise Linear
Approximation (PLA) and many others. All these
algorithms help to make data-driven predictions or
decisions, through building a model from sample input

and output data series. In a machine learning context,
this process is known as training.

As a result of implementing machine learning
algorithms, the user gets a data-based predictive model.
Essentially, a data-based model is often nothing more
than a complex polynomial that describes the
multidimensional response surface of the model or, in
other words, a substitution (“black box”) of existing
experimental or simulation data.

Different software vendors use different terms and
meanings for data-based models, for example,
approximation models, Response Surface Models (RSM),
Reduced-Order Models (ROM), metamodels, surrogate
models etc., but essentially, they are all pretty similar by
function – they predict or allow model outputs to be
assessed in advance.

The first and obvious question here is how many points in
those data series do we need to create a reliable data-
based model? There is no universal answer to that
question. In most of the cases more points mean better
quality, but at least it will need N points if the problem is
linear and N² when it’s nonlinear, where N is the number
of input parameters. Using fewer points is just senseless.
The crucial question here is the quality check of the
model afterward; a process known as model validation.
For that purpose, we should have a separate set of data
points (test data) for comparison, which were not used
during the training. After training is finished, the model
predictions are compared with the test data on the same
inputs, as shown in Figure 1. Comparing the difference
between the output values gives accuracy estimation of
the model.

Figure 1: Example of data-based models built with machine learning algorithms
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Data-Based Models for Design
Performance optimization of an asset at conceptual or
later design stages leads to significant iterative changes,
requiring the performance prediction simulations to be
repeated with different parameters. Using
characterization and reduced order models can save a lot
of computational time and resources. Which means that
data-based models are integrated into the design
process, as shown in Figure 2.

In situations when companies develop assets based on
standard but still variable components, capitalizing on
such data-based models can bring significant
competitive advantage in shortening of time to market. 

Data-Based Models for Manufacturing 
During production, the characteristics of materials or
quality requirements can vary in specific ranges and
being able to predict the effects of these variations on
site, allows the production processes to be optimized
accordingly. In more sophisticated scenarios, production
processes can be optimized on the fly automatically with
respect to online sensor readings.

Predictive models for production processes can be built
from historical, experimental, test, analytical or
simulation data. To get the best of the available data,
sometimes it is good to take advantage of data fusion. For
example, data from physical experiments and
simulations can be combined in the resulting data-based
predictive model. 

In 2016, a project with the Skolkovo Institute of Science
and Technology (Skoltech) accomplished the task of
optimizing manufacturing parameters of a composite
beam pultrusion process1. 

As a first step of the solution, a uniform Design of
Experiments (DOE) was conducted to study the
simulation model behavior and sensitivities. A sample of
45 points was obtained with the Latin hypercube
sampling method and the points evaluated using coupled
thermal-structural analysis in Abaqus. The simulation
model was in advance calibrated on the real-life
experiment. Sensitivity analysis was conducted on this
data to estimate how variations in the model output can
be attributed to variations in the model inputs.

Based on this data, a predictive model based on Gaussian
processes was built with a maximum Relative Root Mean
Square (RRMS) error (based on training sample) of 0.04
thanks to extensive internal validation algorithms. The
resultant model can predict in advance the cure degree
and stress in the beam using the combination of input
parameters, like pulling speed, die temperatures and so
on.

Since one of the optimization goals was to reduce
deformation of the pultruded part, the springback angle
distribution over the parameter space was also studied
and found that an increase in pulling speed does not lead
to significant deformation; this finding allowed the
engineers to expect a flat Pareto frontier when carrying
out the Pareto (multi-objective) optimization of
springback angle vs. pulling speed.

Figure 2: Design data turned into data-based models
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How Machine Learning Empowers Models for Digital Twins

The obtained predictive model allows visualization of the
areas for different constraint violations. Its study showed
that it is possible to obtain configurations that satisfy all
constraints. However, the allowed solution area (shown in
green in Figure 3) is quite small.

The more data that is used for building such predictive
models - the more sophisticated predictions they can
make. This allows adjustment or even optimization of the
production process on the fly, for example, when the
material composition or technical conditions of

Figure 3: The predictive model allows visualization of the areas for different constraint violations of the pultrusion process. In this
figure, the global X axis represents pulling speed, global Y – initial temperature, local X and Y – two die temperatures.

Figure 4: Production lines adjustment based on data-based models
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production have slightly changed, as shown in Figure 4.
By using multi-objective surrogate-based optimization
and a fast-to-evaluate predictive model built using
machine learning and based on simulation of the
process, the pulling speed was increased by 18%, while
satisfying all the mechanical constraints.

Data-Based Models for Operation
If the asset is operating under normal conditions, the
corresponding digital twin collects data for future use.
However, when there is a requirement for real-time
performance optimization or upcoming/occurred
malfunctions, requiring decisions to be made in a short
period, then the speed of predictive model response
becomes mission-critical.

If a full-scale 3D simulation is used for the underlying
predictive model, the response needed can be acquired
long after the useful window of opportunity. Another
approach is to use machine learning with the historical
data from asset operation in normal conditions together
with data series containing pre- and post-malfunction
behavior for comparison with sensor readings coming
from the physical asset. This approach is widely used in
Predictive Maintenance as a part of MRO (Maintenance,
Repair and Overhaul) activities.

In 2018 a pilot project, shown in Figure 5, was carried out
with S7 Airlines to develop a predictive maintenance
system for the Airbus A319 aircraft fleet. This system
makes long-term predictions of the potential failures of
each S7 Airlines aircraft based on the analysis of the
historical datasets on aircraft maintenance and individual
component operation.

The goal of system implementation is to reduce the
number of flight delays caused by technical issues in jet
engines and hydraulic systems. The system estimates
the probability of various types of failures in the defined
upcoming period. If this probability turns out to exceed
the preset level, additional aircraft diagnostics is
recommended.

To build such a system, terabytes of parametric
operational data are enriched and synchronized with data
about technical maintenance works and weather
conditions. Resulting time series are then transformed
into thousands of features. Such features, for example,
can be minimum, mean or maximum values of
parameters on a fixed time interval, etc. Of course,
training predictive models using all these thousands of
features at once leads to overfitting, which is why
optimization algorithms were used to find an optimal
combination of features that leads to good quality for
each particular model.

Figure 5: Asset behavior monitoring systems based on data-based models
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The main difficulty of this approach in aerospace is that the
ratio of operational data with and without malfunctions for
airplanes is somewhere near 1 to 10,000. It means that
validation of the trained models (as explained earlier) is more
than critical. Machine learning alone doesn’t solve this
problem. Applying engineering approaches and understanding
of the subject area is very important. For example, airplane
symmetry allows the training data set to be increased with
malfunctions for specific parts of the jet engine; because data
from an engine on one side of the aircraft can also be used for
predictions for engines on the opposite side.

It’s too early to forecast exact financial results coming from
this project, but the initial aim of reduction of unplanned
downtime by 10%, already leads to savings of millions of
dollars each year. The next step is to implement the production
system with increased efficiency, enabling real-time online
data export and with a user-friendly interface.

Conclusion
Each industrial organization has yet to determine
the usefulness of machine learning and digital
twins for their products and processes. Some may
benefit rapidly, some in the long run and some may
just lose time trying to implement the wrong
concept or techniques, but with time,
implementing machine learning algorithms in
design, production and operation stages will be as
traditional as todays engineering software tools.  r
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