DESIGN SPACE EXPLORATION FOR EVERY EXPERTISE

0

Confused with algorithm selection during Design Space Exploration?

> Laurent Chec, General Director DATADVANCE SAS

> > June, 2017

NAFEMS World Congress 2017 | 11-14 June | Stockholm

pSeven

DATADVANCE

What is Design Space Exploration?

"Design Space Exploration is both a class of quantitative methods and a category of software tools for **systematically and automatically** exploring very large numbers of design alternatives and identifying **optimal** performance parameters. »

B. Jenkins, Ora Research

raresearch

DSE

Aerodynamics, Mechanics, Dynamics, ...

CAE

CAD Geometry

pSeven - Complete Toolkit for DSE

pSeven contains 7 tools for Design Space Exploration:

- Optimization (multidisciplinary, robust)
- Design of Experiments
- Approximation (a.k.a. surrogate modeling, metamodels, RSM models etc.)
- Data Fusion (for surrogate modeling)
- Sensitivity & Dependency Analysis
- Dimension Reduction
- Uncertainty Quantification (OpenTURNS library)

All of the tools (except UQ) were developed **in-house** at the same time that makes them **homogeneous** and **highly interconnected**

pSeven Components

pSeven Platform

NAFEMS World Congress 2017 | 11-14 June | Stockholm

4

Design Optimization

Which product design parameters are the **best**?

How to **improve** product characteristics?

How to decrease effect of parameters **variability** on overall product **behavior**?

Design optimization helps engineers to answer these questions.

Challenge : Choice of best optimization strategy

Optimization in pSeven

Optimization problem statement

Hints setup

- Single-objective
- Multi-objective
- Multidisciplinary
- Robust-based
- Reliability-based

 $\min_{\vec{x}} \vec{F}(\vec{x})$ $\vec{x}_0 \le \vec{x} \le \vec{x}_1$ $\vec{C}_0 \le \vec{C}(\vec{x}) \le \vec{C}_1$

Multi-extremal

Linearity type

Computational time

- pSeven includes full set of optimization algorithms:
 - QN Single or Multi-Objective Quasi-Newton
 - QP Quadratic Programming
 - SQP Sequential QP with Filter
 - SQCQP Quadratically Constrained SQP
 - RDO Robust Design Optimization
 - SBO Surrogate-Based Optimization
 - ...and other local, governing and global algorithms

Single- and Multi-Objective Optimization

Single-objective algorithms:

 Most of them originally implemented and specifically tuned for engineering problems

Multi-objective algorithms:

- Avoids evaluations far from Pareto frontier
- Beat genetic algorithms and scalarization techniques on most of the problems

Algorithms features:

- Run evaluations in parallel
- Unique technology for handling problems with noise
- NaN support: functions have incomputable areas

NSGA-II – 2368 iterations Adaptive Scalarization – 3765 iterations **GTOpt – 488 iterations**

NSGA-II, Adaptive Scalarization, **GTOpt – 280 iterations each**

Surrogate-Based Optimization (SBO)

Surrogate-Based Optimization (SBO) is a class of optimization algorithms involving constructing and optimizing surrogate models as auxiliary steps.

Features:

- Intelligently spends evaluations budget
- Allows to effectively solve large scale problems (up to 100 design variables) based on unique implementation of multi-resolution GP.
- In-house developed DoE strategy, which respects as much feasibility domain of the problem as possible
- Single slider regulates the complexity of applied global methods

Optimization Configuration in pSeven

pSeven doesn't require knowledge of a specific optimization algorithm and its settings from user:

- Set of options and hints helps user to describe problem and desired solution from his point of view, not from the algorithmic point of view:
 - Hints for variables and responses: expensive/cheap, linear/quadratic/generic.
 - Options presets: analytical problem, smooth problem, noisy problem, heavily noisy problem, expensive problem.
 - High-level options: optimization stop criteria, globalization intensity, number of Pareto points.
- SmartSelection technology chooses the optimal algorithm automatically based on hints, options and optimization behavior.

Analytica	al problem	ı					
Smooth	problem				>		
		Value	P	Description			
Noise an			{}		Private options		
Noisy problem			stop workflow		The action to perform if the block encounters an e		
Heavily r	Heavily noisy problem				Use absolute magnitude for gradient tolerance.		
					Set assumed smoothness of constraint functions		
Expensiv	e problen	n	0.00001		Set required relative precision of constraints satis		
	expensive propretti				Set relative consecutive coordinate change three		
			Auto		Set differentiation scheme order.		
(Custom	(Custom)				Set strategy for estimating derivatives.		
			False		Require optimizer to stay within the feasible dom		
					Approximate number of Pareto optimal solutions		
Smooth (aroblem	-	0.0		Option switches on global search optimizer capab		
CONTRACTOR IN	smooth problem *				Set gradient threshold.		
×		LogLevei	Info		Set minimum log level.		
		MOPIsGlobal	True		Set multi-objective optimization mode.		
		MaxBarallol	0		Set maximum of OpenMP threads.		
dd constraint					Im number of expensive function evaluati		
					im evaluations for constraints and objectiv		
					cal differentiation step.		
onstraint name:	c1		shold for relative consecutive change of o				
			umed smoothness of objective functions.				
ype:	RealScalar		▼ 1	L	of points to include in the result data set		
					analytic forms of problem objectives and		
ounds:				straints violation relative error threshold f			
			L		dient threshold for robust optimization. If s		
in a sub-transfer					ective value relative error threshold for ro		
nearity type:	Generic		ation time limit. Use 0 for no limit.				
			/off trace level logging of optimization pro				
valuation cost type:	Cheap		•				
					OK Cancel Apply		
			OK Ca	ncel			

pSeven Adaptive Optimization Example

Design Optimization Made Easy

pSeven provides easy and effective solution for most of industry optimization problems:

- Problem statement: single- or multi-objective, multidisciplinary, robust- or reliability-based
- Large dimensionality
- Continuous and/or discrete input parameters
- Nonlinear, multimodal or noisy objective functions and constraints
- Presence of implicit constraints (domains of undefined behavior)
- Presence of uncertainties
- Long calculation time

Approximation Models

Approximation models are the **substitution** ("blackbox") of existing **data** and **simulation** models.

- Predict response function values for new designs
- Accelerate computation of complex simulation models by many orders of magnitude
- Use fast surrogate models in parametric and optimization studies
- Capture essential knowledge from vast amounts of data
- Easily and safely exchange surrogate models between partners preserving IP rights

Approximation in pSeven

Data can be very different in dimensionality, size and noisiness. Modeling may also require additional pre-and post-processing to collect data and assess the results.

pSeven is a **«Swiss army knife»** for creating approximation models:

- Data fusion construction of models from multi-fidelity data sources
- Accuracy and error assessment of constructed models
- Exact fit and smoothing
- Full control of the model construction time
- Handling of missing data and discontinuities
- Updating existing models with new data
- Combining of models
- Neutral Export to C, Octave, FMI, Excel

Approximation Techniques in pSeven

pSeven provides industry proven techniques for approximation:

- Piecewise Linear Approximation (PLA)
- ID Splines with tension (SPLT)
- Response Surface Model (RSM)
- Gaussian Processes (GP)
- Gradient Boosted Regression Trees (GBRT)
- High Dimensional Approximation (HDA)
- Tensor Approximation and Incomplete Tensor Approximation (TA, iTA)

13

Techniques

...and other in-house techniques

User-Friendly GUI for Creating Approximation Models

pSeven **Model Builder** allows to easily set up approximation model creation:

- Select input and output data series
- Choose SmartSelection or Manual mode
- Add hints about the model (linear, exact fit, etc.)
- Build approximation model

After building model **export** it to:

Excel

FMI

• C

DLL

Executable file

Model builder							
1odel name:	Model			Comment:			
initial model:	<none></none>		•				
Data settings					~ ~	/ + - ≡	
Training data	Test data	Туре	Categorical	Output noise variance	Training data filter	Test data filter	
optimal_f[0]		input					
optimal_f[1]		output					
SmartSelecti X Exact fit	on™ mode × Tensor structure	× Enable NaN p	rediction				
🔵 Manual mode	2					3	
0					Build Build and co	ntinua Cancel	

Model Builder in pSeven

Predictive Modeling

How to **predict** product behavior in various conditions? How to process **data** from **experiments** and **simulations** together? How to use huge data samples and simulations **faster**?

Predictive modeling is based on using approximation models created from available data or simulation.

SmartSelection for Automatic Choosing of Algorithms

pSeven doesn't require knowledge of a specific algorithm or technique and its settings from user:

- SmartSelection is available for optimization and approximation
- Set of options and hints helps user to describe problem and desired solution from his point of view, not from the algorithmic point of view
- SmartSelection automatically selects the most efficient technique or combination of techniques for a given problem and data, so users can concentrate on the engineering problem itself

Automatic Choosing of Best-in-Class Algorithms for Optimization and Approximation

Scalable and effective **optimization**:

- Full set of gradient-based algorithms for any type of problem
- Multi-objective surrogate-based optimization (SBO)
- Up to 100 input parameters for SBO

Flexible and accurate **approximation**:

- Data Fusion for building models from multi-fidelity data
- Full control over time, accuracy and missing data
- Calculation of error and gradient for predicted value
- Re-training and combining of models

pSeven vs. open optimization algorithms accuracy

pSeven vs. open approximation algorithms accuracy

Airbus to reduce lead tim ×

4.

🗧 🔶 C 🏠 🛈 www.airbus.com/presscentre/pressreleases/press-release-detail/detail/airbus-to-reduce-lead-times-in-numerical-analysis-activities-for-aircraft-design/

- F

Roots of the Company

Company roots goes to European aviation and Russian mathematics:

- DATADVANCE has been incorporated in 2010 as a result of a collaborative research program by:
 - Airbus Group (formerly EADS) a global leader in aerospace and defense industry
 - Institute for Information Transmission Problems one of the leading mathematical centers in Russia with three Fields prize winners on the staff
- More than 200 engineers have been trained at Airbus

Our customers: pSeven is industry-proven solution

DATADVANCE

Visit us at Booth #35

DATADVANCE