
 

Surrogate Based Optimization (SBO) in pSeven 

Surrogate based optimization capabilities in 

pSeven cover all problem types listed here 

including robust formulations. Moreover, it 

provides the base for mixed-integer variables 

support in pSeven. SBO methods are typically 

applied for any computationally expensive input 

problem.  

I. Overview 

Surrogate based optimization in pSeven is 

based on Gaussian Processes (GP) modeling 

technique and originates from Probability of 

Improvement (PI) approach. Still, pSeven 

implements numerous changes with respect to 

conventional formulations. In particular, GP 

construction and philosophy have been 

drastically altered, so a qualitative review of 

corresponding aspects of pSeven optimizer is 

needed. Conventional surrogate based 

optimization approaches have two prime 

drawbacks, that can be illustrated on the well-

known GP modeling: 

1. Model training takes too much time and has 

large memory footprint. Model training implies 

maximization of some derived quantity, usually 

likelihood or some cross validation criterion. In 

either case, it reduces to multiple evaluation of 

model predictions with varying model 

parameters, which requires to invert the 

correlation matrix on every parameters change. 

In the conventional implementation, the cost of 

every evaluation scales like 𝑂(𝑁𝑠𝑎𝑚𝑝𝑙𝑒
3 ) (𝑁𝑠𝑎𝑚𝑝𝑙𝑒 

being the current sample size), because the 

correlation matrix is of size 𝑁𝑠𝑎𝑚𝑝𝑙𝑒 × 𝑁𝑠𝑎𝑚𝑝𝑙𝑒  

and becomes computationally expensive even 

for moderate samples 𝑁𝑠𝑎𝑚𝑝𝑙𝑒 ∼ 𝑂(103).  Model 

training is more time-consuming in problems 

with large dimensional design scape situation 

with the large number of involved model 

parameters. The minimal required number of 

sampled designs scales like 𝑁𝑠𝑎𝑚𝑝𝑙𝑒 ∼ 𝑁 in 𝑁 

dimensions. The total number of model 

parameters to be determined is of the same 

order, 𝑁𝑝𝑎𝑟𝑎𝑚 ∼ 𝑁. Additionally, the number of 

iterations required to locate likelihood maximum 

is of order 𝑁, 𝑁𝑖𝑡𝑒𝑟 ∼ 𝑁, each of which costs 𝑁 

evaluations at different parameters values. 

Overall conclusion is that the cost of model 

training scales with problem dimensionality as 

𝑁𝑖𝑡𝑒𝑟 ⋅ 𝑁 ⋅ 𝑁𝑠𝑎𝑚𝑝𝑙𝑒
3 ∼ 𝑁5  . The above implies that 

conventional GP-based SBO strategies are not 

applicable to large scale problems. Recently, 

there were a few notable algorithmic 

achievements, aimed to overcome these 

limitations. For instance, one could exclusively 

utilize iterative matrix methods for large samples 

and thus reduce the cost of every elementary 

step to 𝑂(𝑁𝑠𝑎𝑚𝑝𝑙𝑒
2 ). Although this helps to push 

maximal manageable sample sizes to a few 

thousand, this solution is not entirely satisfactory 

because the above 𝑁5 estimate is simply 

changed to something like 𝑁4, which is still 

prohibitive at large 𝑁. 

2. None of conventional surrogate models 

properly takes into account possible multi-scale 

dependencies of underlying model. Primarily, 

the fact that virtually all the surrogate models 

used nowadays have only a small number of 

tunable parameters. Hence, they cannot be 

adequate for models, which exhibit multi-scale 

behavior. The need to invent multi-resolution 

models had become evident long ago (see, for 

instance, recent activities in this field in 

mathematical statistics literature), however, we 

are not aware of any satisfactory solution up to 

now. Note that the wish to have multi-resolution 

surrogates contradicts previously discussed 

complexity of model construction process: the 

more parameters surrogate model possess 
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(multi-resolution) the more costly it becomes to 

construct (training time). To summarize, the 

need to apply SBO inspired techniques to large 

scale problems requires to resolve two 

contradictory issues: reduce to admissible level 

the cost of model training (both the time and 

memory requirements) and simultaneously 

incorporate multi-resolution capabilities into the 

model, because generically high dimensional 

underlying models do exhibit different length 

scales. 

Although the above challenge might seem 

unsolvable, there is a crucial simplifying 

observation. Namely, we are not going to 

construct full-fledged surrogate models for 

underlying responses as it is usually the goal in 

mathematical statistics. In optimization context, 

the goal is to find optimal solution and not to 

predict responses away from optimality. This 

means, in particular, that surrogates must be 

accurate only in promising regions of the design 

space. Technically, this might be best illustrated 

by the generic sequence of steps performed 

during surrogate-based optimization (SBO). 

Here, one starts with initial design of experiment 

(DoE) plan aimed to produce well separated set 

of points having good space filling properties. By 

its very definition, DoE generated sample is 

almost uniform in the design space and 

therefore there is a single number characterizing 

DoE sample: characteristic (mean) distance 

𝐿𝑚𝑒𝑎𝑛 between nearest designs. Suppose now 

that we want to train GP model on DoE 

generated sample. Silent feature of virtually any 

GP model is that its tunable parameters reflect 

the correlation lengths along different coordinate 

axes in the design space. Then it follows just 

from dimensional analysis that properly trained 

GP model ought to have tuned parameters 

equal to 𝐿𝑚𝑒𝑎𝑛 up to dimensionless factors of 

order one. An immediate and surprising 

conclusion is that model training is in fact 

redundant once training set is uniformly 

distributed and has single characteristic length 

scale: optimal parameter values at least in case 

of Kriging-like GP models might be guessed a 

priori without any actual likelihood optimization. 

To be on the safe side, one should, of course, 

check the adequacy of guessed optimal 

parameters and, perhaps, perform a few 

likelihood optimization steps. However, this does 

not invalidate the prime message of performed 

analysis: full fledged likelihood optimization 

should not be conducted, relevant surrogate 

model parameters might be guessed in 

advance. 

   The above conclusion is a great step towards 

reducing the cost of surrogate model training. 

However, it is operational only at the initial DoE 

stage and seems to be not applicable after that. 

To proceed, we need to consider (in general 

terms) the sequence of SBO steps performed to 

get optimal solution. 

    These are very simple ideologically: given 

current surrogate model optimizer predicts a few 

promising locations and evaluates underlying 

model at these designs. Then training set is 

augmented with newly discovered responses, 

surrogate model is retrained and optimization 

process proceeds to the next iteration. 

Prime observations here: 

1. New designs are added at distinguished 

locations only, hopefully, near the (locally) 

optimal solution. 

2. Only a few designs are added at a time 

(number of added designs is much smaller than 

the current sample size). 

3. Characteristic nearest neighbor distances in 

the vicinity of added designs is smaller than that 

of original sample. 

It follows then that initial DoE sample is in fact 

augmented with well-localized clusters of new 



 

solutions. Qualitatively, upon accounting for new 

designs surrogate models should only change in 

the vicinity of added points, far away from added 

clusters surrogate are expected to remain intact. 

Moreover, due to relatively small distance scale 

within each cluster compared to that of 

underlying sample correlations within each 

cluster are expected to be stronger than that 

between new solutions and points from current 

sample. Thus we should explicitly account for 

correlations within each cluster. 

Moreover, each of these in-cluster correlations 

are to be described by new cluster-specific GP 

models, ultimate reason being that distances 

within each cluster are small and hence 

corresponding responses might experience 

multi-resolution properties of underlying model. 

In more details, the above reasoning might be 

reduced to the following formulation: 

 1. Evaluated designs eventually cluster in 

promising regions of the design space 

 2. Hierarchy of length scales could be 

observed: 

    Let ⟨𝐿⟩𝑥 denotes characteristic distance 

between nearest sampled designs around x. 

Then 

    - DoE stage: ⟨𝐿⟩𝑥 = 𝐿0∀𝑥 

    - After a few iterations (Ω is some promising 

region): 

            ⟨𝐿⟩𝑥 = 𝐿0𝑥 ∉ Ω⟨𝐿⟩𝑥 = 𝐿1𝑥 ∈ Ω𝐿1 ≲ 𝐿0    

    - At later stages (Ωi are the nested promising 

regions): 

⟨𝐿⟩𝑥 = 𝐿0 𝑥 ∉ Ω
⟨𝐿⟩𝑥 = 𝐿1 𝑥 ∈ Ω1

⋯
⟨𝐿⟩𝑥 = 𝐿𝑘 𝑥 ∈ Ω𝑘

𝐿𝑘 ≲ ⋯ ≲ 𝐿1 ≲ 𝐿0

 

Therefore, at the expense of additional 

evaluations we enforce length scales hierarchy 

at every iteration: instead of single candidate 

evaluation we perform DoE sampling in 

candidate's vicinity, determined by upper region 

length scale. Consequences: 

  - Underlying model is not only probed at 

candidate location xc, but is explored in 

candidate's vicinity Ω(𝑥𝑐) 

𝐹(𝑥𝑐) → {𝐹(𝑥𝑖)}, 𝑖 ∈ Ω(𝑥𝑐)   

- Every iteration induces well-defined smaller 

length scale 𝐿𝑘       

 𝐿𝑘 ≲ ⋯ ≲ 𝐿1 ≲ 𝐿0, 

each 𝐿𝑘 being associated with particular nested 

regions. 

As a crucial side effect of the above reasoning 

we note that for each new submodel the training 

process becomes essentially simple as it was for 

the first model constructed at DoE stage. The 

only thing which is yet to be discussed is how to 

unify various surrogates into one global model 

describing underlying responses in whole design 

space. For only one added cluster the answer 

seems to be simple: 

in addition to correlations 𝐾(0)(𝑥, 𝑦),  present 

before new solutions were added, additional 

contribution looks like composition of three 

terms: 

  1. From point x to some clustered design 𝑧𝑖 

  2. Within new cluster correlations of points 𝑧𝑖 

and 𝑧𝑗 

  3. From point 𝑧𝑗  to considered location 𝑦 

Formally, updated correlation function looks like: 

𝐾(𝑥, 𝑦) = 𝐾(0)(𝑥, 𝑦) +

𝛼 ∑𝑖,𝑗 𝐾(1)(𝑥, 𝑧𝑖)[𝐾(1)]−1(𝑧𝑖 , 𝑧𝑗)𝐾(1)(𝑧𝑗 , 𝑦) where 

the only undetermined parameter is the relative 

magnitude of new correlations with respect to 

old ones. This is important: the above generic 

reasoning valid in SBO context lead us to the 

conclusion that surrogate model updating 

reduces to simple one-dimensional optimization 

subproblem to determine relative weight factor 

α. All other parameters are determined a priory 

thanks to the specific design space 

resolution properties of SBO methodology. 



 

 

The above construction trivially generalizes to 

the case of several nested regions in which 

separate GP models are defined. Namely, 

anzats for multi-resolution GP correlation 

function, which reflects the above hierarchy of 

length scales, reads 

 𝐾(𝑥, 𝑦) = 𝐾(0)(𝑥, 𝑦) +

∑𝜇 𝛼𝜇 ∑𝑖,𝑗 𝐾(𝜇)(𝑥, 𝑥𝜇
𝑖 )[𝐾(𝜇)]𝑖𝑗

−1𝐾(𝜇)(𝑥𝜇
𝑗
, 𝑦), 

where 𝐾(𝜇) are Ω𝜇-specific correlation 

vector/matrix. Parameters to be determined here 

include only relative amplitudes 𝛼𝜇 ≥ 0. 

To summarize, our proposition is to radically 

reduce the computational cost of surrogate-

based optimization simultaneously introducing 

multi-resolution capabilities into the surrogate 

models. Underlying idea is based on the 

specifics of virtually any SBO setup, namely, the 

fact that uniformity of sampled designs could 

easily be achieved at every SBO step. Price to 

pay is the necessity to explicitly maintain 

the hierarchy of surrogate models, each 

describing subsample correlations at every SBO 

step. However, this should be considered as 

advantage, not the drawback: hierarchical 

structure of surrogates naturally admits multi-

resolution capabilities of total surrogate model. 

Prime distinctive features of our approach: 

- Prime gross features of every correlation 

function 𝐾(𝜇) are known in advance once length 

scale hierarchy is respected 

- Seems that one could avoid 𝐾(𝜇) -parameters 

tuning (``training'') altogether 

- Only amplitudes αμ are to be determined for 

every new region (every iteration) 

- 𝛼𝜇 determination is cheap (no inversions of 

large matrices is involved) 

- Knowledge of length scale hierarchy allows to 

predict the domains where model is changing 

upon the sample augmentation. 

II. Single-Objective Constrained SBO 

We have to distinguish two vastly different 

cases: 

 1. Expensive objective function (perhaps, 

supplemented with cheap constraints). 

 2. Single expensive constraint entering the 

problem with cheap objective function. 

Generic combination of cheap/expensive 

observables is a natural generalization of these 

two extremes. 

Let's consider the first case first. 

  1. The case of single expensive objective 

function 

Our approach is modeled around the well-known 

"Probability of Improvement" treatment, in which 

auxiliary internal subproblem to be solved reads 

𝑥∗ = arg𝑚𝑎𝑥
𝑥

𝑃𝐼(𝑥)𝑃𝐼(𝑥) = Φ[𝑢]𝑢 =
𝑓∗−𝑓

^

𝑥

𝜎𝑥
^   where 

(𝑓
^

, 𝜎
^

) is the surrogate model prediction and 

uncertainty. Note that numerically it is complete 

disaster to consider Φ[𝑢]. Instead pSeven solves 

equivalent problem 

𝑥∗ = arg𝑚𝑎𝑥
𝑥

𝑢𝑥  

Meaning of PI criterion is simple: solution x∗ is 

the point at which probability to improve current 

best value 𝑓∗ is maximal (including prediction 

uncertainties). There are a few weak points of PI 

strategy: 

 - Performance crucially depends upon the 

choice of 𝑓∗ value. Indeed, 𝑓∗ is to large extent 

arbitrary, there are two limiting cases: 

   𝑓∗ = −𝜖 + 𝑚𝑖𝑛𝑓
^

: algorithm often ``hangs'' in 

small vicinity of already known solutions. 

   𝑓∗ = −∞: algorithm essentially find 𝑥∗ =

arg𝑚𝑎𝑥𝜎
^
, which is a badly posed problem 

(multiple equivalent solutions). 

 - Algorithm is not sufficiently robust with respect 

to (hopefully, small) inadequacy of surrogates. 

When surrogate model predictions deviate 



 

significantly from true responses PI criterion 

suggests wrong evaluation candidates. 

To ameliorate both the above deficiencies 

pSeven considers "continuous" family of PI-like 

criteria 𝑃𝐼(𝑥, 𝑡): 

𝑓∗ → 𝑓∗(𝑡) = −𝑡|Δ𝑓| + 𝑚𝑖𝑛𝑓
^

𝑡 ∈ [0: 1] where Δ𝑓 

is estimated range of objective function variation 

and is chosen such that 𝑡 ∈ [0: 1] provides a 

homotopy between local and global search 

modes. The solution 𝑥∗ also becomes t-

dependent  𝑥∗ → 𝑥∗(𝑡) and it is crucial to 

investigate the continuity of the path 𝑥∗(𝑡) in the 

design space. Note that the above mentioned 

switch from local to global search with rising t 

manifests itself in discontinuity of 𝑥∗(𝑡) at some 

t-values 𝑥∗(𝑡𝑖 − 0) ≠ 𝑥∗(𝑡𝑖 + 0). Technically, we 

consider sufficiently large number of t-values: 

  - Discontinuity of 𝑥∗(𝑡) is revealed by the 

appearance of several well-separated clusters of 

evaluation candidates. 

  - Within each cluster we could pick up 

essentially any point as the next candidate to be 

evaluated. The above ensures the presence of 

both local and global search modes in pSeven 

SBO strategy. Overall algorithm performance 

crucially depends upon the solution of internal 

auxiliary problem. We utilize multi-start strategy 

which gradually reaches optimal solution and 

allows to keep candidates to be reused on next 

SBO iterate: 

  - Take sufficiently large number of initial 

guesses and sufficiently crude termination 

tolerances. 

  - Push current candidates towards local optimal 

solutions. 

  - Cluster resulting set and select only one 

candidate from each cluster 

  - Diminish termination tolerances and close the 

cycle 

Note: intermediate locally optimal designs are 

the natural candidates for multi-starts at next 

SBO iteration thanks to multi-resolution 

capabilities of utilized surrogate models. 

It remains to discuss how the surrogate models 

are updated during the course of algorithm. 

Normally, underlying model is evaluated for 

each obtained evaluation candidate 𝑥𝑖
∗, 

surrogates are updated with new responses. 

However, implemented hierarchical GP appeal 

to slightly different strategy, which requires the 

following actions for each candidate point 𝑥𝑖
∗: 

  - Establish local characteristic length scale 𝜆𝑖 

between nearby sampled designs 

  - Generate DoE plan in the vicinity of 𝑥𝑖
∗ with 

characteristic length scale 𝜆𝑖 < 𝜆𝑖 

  - Evaluate underlying model at generated 

locations. These responses are to be used to 

train next hierarchical GP level. 

  2. The case of single expensive constraint  and 

cheap objective function. 

Consider the case of cheap objective 

supplemented with one expensive constraint 

𝑚𝑖𝑛
𝑥

𝑓𝑐𝐿 ≤ 𝑐 ≤ 𝑐𝑈   

for which current surrogate model c^ is 

available. pSeven establishes next evaluation 

candidate in two stages: 

  - Solve  

𝑚𝑖𝑛
𝑥

𝑓𝑐𝐿 ≤ 𝑐
^

≤ 𝑐𝑈 

infeasibility of which says nothing about 

infeasibility of original problem. If it is infeasible, 

design with minimal constraints violations is 

taken as 𝑥∗. 

  - Otherwise, pSeven takes into account model 

uncertainties by considering 

      𝑚𝑖𝑛
𝑥

𝑓Φ[
𝑐𝐿−𝑐

^

𝜎
^ ] ≤ 𝛼Φ[

𝑐
^

−𝑐𝑈

𝜎
^ ] ≤ 𝛼   

with predefined small α-parameter (quantile). 

 

 

 

 



 

III. Multi-Objective Constrained SBO 

Multi-Objective SBO optimization of pSeven is 

build on top of corresponding single-objective 

counterpart, hence directly utilizes all the 

advantages of respective algorithms (see 

above). We only need to overview how the 

original multi-objective problem is reduced to the 

sequence of single-objective treatments. 

Underlying idea is simple: first, pSeven 

establishes complete set of anchor points in 

close analogy to what is done in non-surrogate 

based approaches. Anchor points determination 

allows to estimate global geometry of Pareto 

frontier, to detect degenerate cases earlier and 

to proceed to the second stage of Pareto front 

discovery. 

Second stage utilizes the notion of Chebyshev 

convolution to construct particular instance of 

single-objective problem, the solution of which 

provides new Pareto optimal design. In more 

details, respective single objective function looks 

like: 

𝑚𝑎𝑥
𝑖

[𝛼𝑖 ⋅ 𝑓𝑖] ∑

𝑖

𝛼𝑖 = 1𝑖 = 1, … , 𝐾 

where the coefficients 𝛼𝑖 parameterizing K-

dimensional simplex, are varied from iteration to 

iteration in a way, which ensures even coverage 

of Pareto frontier.  

IV. Summary 

Surrogate based optimization in pSeven 

provides an universal set of algorithms aimed to 

deal with virtually any expensive input problems, 

ranging from simplest unconstrained single-

objective case to the most difficult to handle 

multi-objective robust formulations. It 

incorporates cutting-edge efficient methods for 

both the surrogate models construction and their 

forthcoming exploration/exploitation. Prime 

advantage of surrogate modeling in pSeven 

optimizer is its multi-resolution ability, which 

being supplemented with specific hierarchical 

optimization strategies, allows to address large-

scale expensive optimization problems, which 

are difficult to consider with conventional 

methods. 

 


